MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserd Structured version   Visualization version   Unicode version

Theorem iserd 7768
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
iserd.1  |-  ( ph  ->  Rel  R )
iserd.2  |-  ( (
ph  /\  x R
y )  ->  y R x )
iserd.3  |-  ( (
ph  /\  ( x R y  /\  y R z ) )  ->  x R z )
iserd.4  |-  ( ph  ->  ( x  e.  A  <->  x R x ) )
Assertion
Ref Expression
iserd  |-  ( ph  ->  R  Er  A )
Distinct variable groups:    x, y,
z, R    x, A    ph, x, y, z
Allowed substitution hints:    A( y, z)

Proof of Theorem iserd
StepHypRef Expression
1 iserd.1 . . 3  |-  ( ph  ->  Rel  R )
2 eqidd 2623 . . 3  |-  ( ph  ->  dom  R  =  dom  R )
3 iserd.2 . . . . . . . 8  |-  ( (
ph  /\  x R
y )  ->  y R x )
43ex 450 . . . . . . 7  |-  ( ph  ->  ( x R y  ->  y R x ) )
5 iserd.3 . . . . . . . 8  |-  ( (
ph  /\  ( x R y  /\  y R z ) )  ->  x R z )
65ex 450 . . . . . . 7  |-  ( ph  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
74, 6jca 554 . . . . . 6  |-  ( ph  ->  ( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
87alrimiv 1855 . . . . 5  |-  ( ph  ->  A. z ( ( x R y  -> 
y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
98alrimiv 1855 . . . 4  |-  ( ph  ->  A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
109alrimiv 1855 . . 3  |-  ( ph  ->  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
11 dfer2 7743 . . 3  |-  ( R  Er  dom  R  <->  ( Rel  R  /\  dom  R  =  dom  R  /\  A. x A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
121, 2, 10, 11syl3anbrc 1246 . 2  |-  ( ph  ->  R  Er  dom  R
)
1312adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  R )  ->  R  Er  dom  R )
14 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  R )  ->  x  e.  dom  R )
1513, 14erref 7762 . . . . . . 7  |-  ( (
ph  /\  x  e.  dom  R )  ->  x R x )
1615ex 450 . . . . . 6  |-  ( ph  ->  ( x  e.  dom  R  ->  x R x ) )
17 vex 3203 . . . . . . 7  |-  x  e. 
_V
1817, 17breldm 5329 . . . . . 6  |-  ( x R x  ->  x  e.  dom  R )
1916, 18impbid1 215 . . . . 5  |-  ( ph  ->  ( x  e.  dom  R  <-> 
x R x ) )
20 iserd.4 . . . . 5  |-  ( ph  ->  ( x  e.  A  <->  x R x ) )
2119, 20bitr4d 271 . . . 4  |-  ( ph  ->  ( x  e.  dom  R  <-> 
x  e.  A ) )
2221eqrdv 2620 . . 3  |-  ( ph  ->  dom  R  =  A )
23 ereq2 7750 . . 3  |-  ( dom 
R  =  A  -> 
( R  Er  dom  R  <-> 
R  Er  A ) )
2422, 23syl 17 . 2  |-  ( ph  ->  ( R  Er  dom  R  <-> 
R  Er  A ) )
2512, 24mpbid 222 1  |-  ( ph  ->  R  Er  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   class class class wbr 4653   dom cdm 5114   Rel wrel 5119    Er wer 7739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-er 7742
This theorem is referenced by:  iseri  7769  iseriALT  7770  swoer  7772  eqerOLD  7778  0erOLD  7781  iiner  7819  erinxp  7821  ecopoverOLD  7852  enerOLD  8003  cicer  16466  eqger  17644  gicerOLD  17719  gaorber  17741  efgrelexlemb  18163  efgcpbllemb  18168  hmpher  21587  xmeter  22238  phtpcerOLD  22795  vitalilem1OLD  23377  ercgrg  25412  metider  29937
  Copyright terms: Public domain W3C validator