MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlksref Structured version   Visualization version   Unicode version

Theorem erclwwlksref 26934
Description:  .~ is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.)
Hypothesis
Ref Expression
erclwwlks.r  |-  .~  =  { <. u ,  w >.  |  ( u  e.  (ClWWalks `  G )  /\  w  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  w
) ) u  =  ( w cyclShift  n )
) }
Assertion
Ref Expression
erclwwlksref  |-  ( x  e.  (ClWWalks `  G
)  <->  x  .~  x
)
Distinct variable groups:    n, G, u, w    x, n, u, w
Allowed substitution hints:    .~ ( x, w, u, n)    G( x)

Proof of Theorem erclwwlksref
StepHypRef Expression
1 anidm 676 . . . 4  |-  ( ( x  e.  (ClWWalks `  G
)  /\  x  e.  (ClWWalks `  G ) )  <-> 
x  e.  (ClWWalks `  G
) )
21anbi1i 731 . . 3  |-  ( ( ( x  e.  (ClWWalks `  G )  /\  x  e.  (ClWWalks `  G )
)  /\  E. n  e.  ( 0 ... ( # `
 x ) ) x  =  ( x cyclShift  n ) )  <->  ( x  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  x ) ) x  =  ( x cyclShift  n
) ) )
3 df-3an 1039 . . 3  |-  ( ( x  e.  (ClWWalks `  G
)  /\  x  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  x
) ) x  =  ( x cyclShift  n )
)  <->  ( ( x  e.  (ClWWalks `  G
)  /\  x  e.  (ClWWalks `  G ) )  /\  E. n  e.  ( 0 ... ( # `
 x ) ) x  =  ( x cyclShift  n ) ) )
4 eqid 2622 . . . . . 6  |-  (Vtx `  G )  =  (Vtx
`  G )
54clwwlkbp 26883 . . . . 5  |-  ( x  e.  (ClWWalks `  G
)  ->  ( G  e.  _V  /\  x  e. Word 
(Vtx `  G )  /\  x  =/=  (/) ) )
6 cshw0 13540 . . . . . . 7  |-  ( x  e. Word  (Vtx `  G
)  ->  ( x cyclShift  0 )  =  x )
7 0nn0 11307 . . . . . . . . . 10  |-  0  e.  NN0
87a1i 11 . . . . . . . . 9  |-  ( x  e. Word  (Vtx `  G
)  ->  0  e.  NN0 )
9 lencl 13324 . . . . . . . . 9  |-  ( x  e. Word  (Vtx `  G
)  ->  ( # `  x
)  e.  NN0 )
10 hashge0 13176 . . . . . . . . 9  |-  ( x  e. Word  (Vtx `  G
)  ->  0  <_  (
# `  x )
)
11 elfz2nn0 12431 . . . . . . . . 9  |-  ( 0  e.  ( 0 ... ( # `  x
) )  <->  ( 0  e.  NN0  /\  ( # `
 x )  e. 
NN0  /\  0  <_  (
# `  x )
) )
128, 9, 10, 11syl3anbrc 1246 . . . . . . . 8  |-  ( x  e. Word  (Vtx `  G
)  ->  0  e.  ( 0 ... ( # `
 x ) ) )
13 eqcom 2629 . . . . . . . . 9  |-  ( ( x cyclShift  0 )  =  x  <->  x  =  (
x cyclShift  0 ) )
1413biimpi 206 . . . . . . . 8  |-  ( ( x cyclShift  0 )  =  x  ->  x  =  ( x cyclShift  0 ) )
15 oveq2 6658 . . . . . . . . . 10  |-  ( n  =  0  ->  (
x cyclShift  n )  =  ( x cyclShift  0 ) )
1615eqeq2d 2632 . . . . . . . . 9  |-  ( n  =  0  ->  (
x  =  ( x cyclShift  n )  <->  x  =  ( x cyclShift  0 ) ) )
1716rspcev 3309 . . . . . . . 8  |-  ( ( 0  e.  ( 0 ... ( # `  x
) )  /\  x  =  ( x cyclShift  0
) )  ->  E. n  e.  ( 0 ... ( # `
 x ) ) x  =  ( x cyclShift  n ) )
1812, 14, 17syl2an 494 . . . . . . 7  |-  ( ( x  e. Word  (Vtx `  G )  /\  (
x cyclShift  0 )  =  x )  ->  E. n  e.  ( 0 ... ( # `
 x ) ) x  =  ( x cyclShift  n ) )
196, 18mpdan 702 . . . . . 6  |-  ( x  e. Word  (Vtx `  G
)  ->  E. n  e.  ( 0 ... ( # `
 x ) ) x  =  ( x cyclShift  n ) )
20193ad2ant2 1083 . . . . 5  |-  ( ( G  e.  _V  /\  x  e. Word  (Vtx `  G
)  /\  x  =/=  (/) )  ->  E. n  e.  ( 0 ... ( # `
 x ) ) x  =  ( x cyclShift  n ) )
215, 20syl 17 . . . 4  |-  ( x  e.  (ClWWalks `  G
)  ->  E. n  e.  ( 0 ... ( # `
 x ) ) x  =  ( x cyclShift  n ) )
2221pm4.71i 664 . . 3  |-  ( x  e.  (ClWWalks `  G
)  <->  ( x  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  x ) ) x  =  ( x cyclShift  n
) ) )
232, 3, 223bitr4ri 293 . 2  |-  ( x  e.  (ClWWalks `  G
)  <->  ( x  e.  (ClWWalks `  G )  /\  x  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  x
) ) x  =  ( x cyclShift  n )
) )
24 vex 3203 . . 3  |-  x  e. 
_V
25 erclwwlks.r . . . 4  |-  .~  =  { <. u ,  w >.  |  ( u  e.  (ClWWalks `  G )  /\  w  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  w
) ) u  =  ( w cyclShift  n )
) }
2625erclwwlkseq 26932 . . 3  |-  ( ( x  e.  _V  /\  x  e.  _V )  ->  ( x  .~  x  <->  ( x  e.  (ClWWalks `  G
)  /\  x  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  x
) ) x  =  ( x cyclShift  n )
) ) )
2724, 24, 26mp2an 708 . 2  |-  ( x  .~  x  <->  ( x  e.  (ClWWalks `  G )  /\  x  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  x
) ) x  =  ( x cyclShift  n )
) )
2823, 27bitr4i 267 1  |-  ( x  e.  (ClWWalks `  G
)  <->  x  .~  x
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   {copab 4712   ` cfv 5888  (class class class)co 6650   0cc0 9936    <_ cle 10075   NN0cn0 11292   ...cfz 12326   #chash 13117  Word cword 13291   cyclShift ccsh 13534  Vtxcvtx 25874  ClWWalkscclwwlks 26875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535  df-clwwlks 26877
This theorem is referenced by:  erclwwlks  26937
  Copyright terms: Public domain W3C validator