MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkstr Structured version   Visualization version   Unicode version

Theorem erclwwlkstr 26936
Description:  .~ is a transitive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypothesis
Ref Expression
erclwwlks.r  |-  .~  =  { <. u ,  w >.  |  ( u  e.  (ClWWalks `  G )  /\  w  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  w
) ) u  =  ( w cyclShift  n )
) }
Assertion
Ref Expression
erclwwlkstr  |-  ( ( x  .~  y  /\  y  .~  z )  ->  x  .~  z )
Distinct variable groups:    n, G, u, w    x, n, u, w, y    z, n, u, w, x
Allowed substitution hints:    .~ ( x, y, z, w, u, n)    G( x, y, z)

Proof of Theorem erclwwlkstr
Dummy variables  m  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . 2  |-  x  e. 
_V
2 vex 3203 . 2  |-  y  e. 
_V
3 vex 3203 . 2  |-  z  e. 
_V
4 erclwwlks.r . . . . . 6  |-  .~  =  { <. u ,  w >.  |  ( u  e.  (ClWWalks `  G )  /\  w  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  w
) ) u  =  ( w cyclShift  n )
) }
54erclwwlkseqlen 26933 . . . . 5  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ( x  .~  y  ->  ( # `  x
)  =  ( # `  y ) ) )
653adant3 1081 . . . 4  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  (
x  .~  y  ->  (
# `  x )  =  ( # `  y
) ) )
74erclwwlkseqlen 26933 . . . . . . 7  |-  ( ( y  e.  _V  /\  z  e.  _V )  ->  ( y  .~  z  ->  ( # `  y
)  =  ( # `  z ) ) )
873adant1 1079 . . . . . 6  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  (
y  .~  z  ->  (
# `  y )  =  ( # `  z
) ) )
94erclwwlkseq 26932 . . . . . . . 8  |-  ( ( y  e.  _V  /\  z  e.  _V )  ->  ( y  .~  z  <->  ( y  e.  (ClWWalks `  G
)  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z
) ) y  =  ( z cyclShift  n )
) ) )
1093adant1 1079 . . . . . . 7  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  (
y  .~  z  <->  ( y  e.  (ClWWalks `  G )  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z
) ) y  =  ( z cyclShift  n )
) ) )
114erclwwlkseq 26932 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ( x  .~  y  <->  ( x  e.  (ClWWalks `  G
)  /\  y  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  y
) ) x  =  ( y cyclShift  n )
) ) )
12113adant3 1081 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  (
x  .~  y  <->  ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  y
) ) x  =  ( y cyclShift  n )
) ) )
13 simpr1 1067 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( # `  y )  =  (
# `  z )  /\  ( # `  x
)  =  ( # `  y ) )  /\  ( y  e.  (ClWWalks `  G )  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z ) ) y  =  ( z cyclShift  n
) ) )  /\  ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  y ) ) x  =  ( y cyclShift  n
) ) )  ->  x  e.  (ClWWalks `  G
) )
14 simplr2 1104 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( # `  y )  =  (
# `  z )  /\  ( # `  x
)  =  ( # `  y ) )  /\  ( y  e.  (ClWWalks `  G )  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z ) ) y  =  ( z cyclShift  n
) ) )  /\  ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  y ) ) x  =  ( y cyclShift  n
) ) )  -> 
z  e.  (ClWWalks `  G
) )
15 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  m  ->  (
y cyclShift  n )  =  ( y cyclShift  m ) )
1615eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  =  m  ->  (
x  =  ( y cyclShift  n )  <->  x  =  ( y cyclShift  m ) ) )
1716cbvrexv 3172 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( E. n  e.  ( 0 ... ( # `  y
) ) x  =  ( y cyclShift  n )  <->  E. m  e.  ( 0 ... ( # `  y
) ) x  =  ( y cyclShift  m )
)
18 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  =  k  ->  (
z cyclShift  n )  =  ( z cyclShift  k ) )
1918eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  k  ->  (
y  =  ( z cyclShift  n )  <->  y  =  ( z cyclShift  k ) ) )
2019cbvrexv 3172 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( E. n  e.  ( 0 ... ( # `  z
) ) y  =  ( z cyclShift  n )  <->  E. k  e.  ( 0 ... ( # `  z
) ) y  =  ( z cyclShift  k )
)
21 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  (Vtx `  G )  =  (Vtx
`  G )
2221clwwlkbp 26883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( z  e.  (ClWWalks `  G
)  ->  ( G  e.  _V  /\  z  e. Word 
(Vtx `  G )  /\  z  =/=  (/) ) )
2322simp2d 1074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( z  e.  (ClWWalks `  G
)  ->  z  e. Word  (Vtx
`  G ) )
2423ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G ) )  /\  z  e.  (ClWWalks `  G
) )  /\  (
( # `  y )  =  ( # `  z
)  /\  ( # `  x
)  =  ( # `  y ) ) )  ->  z  e. Word  (Vtx `  G ) )
25 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G ) )  /\  z  e.  (ClWWalks `  G
) )  /\  (
( # `  y )  =  ( # `  z
)  /\  ( # `  x
)  =  ( # `  y ) ) )  ->  ( ( # `  y )  =  (
# `  z )  /\  ( # `  x
)  =  ( # `  y ) ) )
2624, 25cshwcsh2id 13574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G ) )  /\  z  e.  (ClWWalks `  G
) )  /\  (
( # `  y )  =  ( # `  z
)  /\  ( # `  x
)  =  ( # `  y ) ) )  ->  ( ( ( m  e.  ( 0 ... ( # `  y
) )  /\  x  =  ( y cyclShift  m
) )  /\  (
k  e.  ( 0 ... ( # `  z
) )  /\  y  =  ( z cyclShift  k
) ) )  ->  E. n  e.  (
0 ... ( # `  z
) ) x  =  ( z cyclShift  n )
) )
2726exp5l 646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G ) )  /\  z  e.  (ClWWalks `  G
) )  /\  (
( # `  y )  =  ( # `  z
)  /\  ( # `  x
)  =  ( # `  y ) ) )  ->  ( m  e.  ( 0 ... ( # `
 y ) )  ->  ( x  =  ( y cyclShift  m )  ->  ( k  e.  ( 0 ... ( # `  z ) )  -> 
( y  =  ( z cyclShift  k )  ->  E. n  e.  ( 0 ... ( # `
 z ) ) x  =  ( z cyclShift  n ) ) ) ) ) )
2827imp41 619 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ( ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G )
)  /\  z  e.  (ClWWalks `  G ) )  /\  ( ( # `  y )  =  (
# `  z )  /\  ( # `  x
)  =  ( # `  y ) ) )  /\  m  e.  ( 0 ... ( # `  y ) ) )  /\  x  =  ( y cyclShift  m ) )  /\  k  e.  ( 0 ... ( # `  z
) ) )  -> 
( y  =  ( z cyclShift  k )  ->  E. n  e.  ( 0 ... ( # `
 z ) ) x  =  ( z cyclShift  n ) ) )
2928rexlimdva 3031 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ( x  e.  (ClWWalks `  G
)  /\  y  e.  (ClWWalks `  G ) )  /\  z  e.  (ClWWalks `  G ) )  /\  ( ( # `  y
)  =  ( # `  z )  /\  ( # `
 x )  =  ( # `  y
) ) )  /\  m  e.  ( 0 ... ( # `  y
) ) )  /\  x  =  ( y cyclShift  m ) )  ->  ( E. k  e.  (
0 ... ( # `  z
) ) y  =  ( z cyclShift  k )  ->  E. n  e.  ( 0 ... ( # `  z ) ) x  =  ( z cyclShift  n
) ) )
3029ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( x  e.  (ClWWalks `  G
)  /\  y  e.  (ClWWalks `  G ) )  /\  z  e.  (ClWWalks `  G ) )  /\  ( ( # `  y
)  =  ( # `  z )  /\  ( # `
 x )  =  ( # `  y
) ) )  /\  m  e.  ( 0 ... ( # `  y
) ) )  -> 
( x  =  ( y cyclShift  m )  ->  ( E. k  e.  (
0 ... ( # `  z
) ) y  =  ( z cyclShift  k )  ->  E. n  e.  ( 0 ... ( # `  z ) ) x  =  ( z cyclShift  n
) ) ) )
3130rexlimdva 3031 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G ) )  /\  z  e.  (ClWWalks `  G
) )  /\  (
( # `  y )  =  ( # `  z
)  /\  ( # `  x
)  =  ( # `  y ) ) )  ->  ( E. m  e.  ( 0 ... ( # `
 y ) ) x  =  ( y cyclShift  m )  ->  ( E. k  e.  (
0 ... ( # `  z
) ) y  =  ( z cyclShift  k )  ->  E. n  e.  ( 0 ... ( # `  z ) ) x  =  ( z cyclShift  n
) ) ) )
3220, 31syl7bi 245 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G ) )  /\  z  e.  (ClWWalks `  G
) )  /\  (
( # `  y )  =  ( # `  z
)  /\  ( # `  x
)  =  ( # `  y ) ) )  ->  ( E. m  e.  ( 0 ... ( # `
 y ) ) x  =  ( y cyclShift  m )  ->  ( E. n  e.  (
0 ... ( # `  z
) ) y  =  ( z cyclShift  n )  ->  E. n  e.  ( 0 ... ( # `  z ) ) x  =  ( z cyclShift  n
) ) ) )
3317, 32syl5bi 232 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G ) )  /\  z  e.  (ClWWalks `  G
) )  /\  (
( # `  y )  =  ( # `  z
)  /\  ( # `  x
)  =  ( # `  y ) ) )  ->  ( E. n  e.  ( 0 ... ( # `
 y ) ) x  =  ( y cyclShift  n )  ->  ( E. n  e.  (
0 ... ( # `  z
) ) y  =  ( z cyclShift  n )  ->  E. n  e.  ( 0 ... ( # `  z ) ) x  =  ( z cyclShift  n
) ) ) )
3433exp31 630 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  (ClWWalks `  G
)  /\  y  e.  (ClWWalks `  G ) )  ->  ( z  e.  (ClWWalks `  G )  ->  ( ( ( # `  y )  =  (
# `  z )  /\  ( # `  x
)  =  ( # `  y ) )  -> 
( E. n  e.  ( 0 ... ( # `
 y ) ) x  =  ( y cyclShift  n )  ->  ( E. n  e.  (
0 ... ( # `  z
) ) y  =  ( z cyclShift  n )  ->  E. n  e.  ( 0 ... ( # `  z ) ) x  =  ( z cyclShift  n
) ) ) ) ) )
3534com15 101 . . . . . . . . . . . . . . . . . . . . 21  |-  ( E. n  e.  ( 0 ... ( # `  z
) ) y  =  ( z cyclShift  n )  ->  ( z  e.  (ClWWalks `  G )  ->  (
( ( # `  y
)  =  ( # `  z )  /\  ( # `
 x )  =  ( # `  y
) )  ->  ( E. n  e.  (
0 ... ( # `  y
) ) x  =  ( y cyclShift  n )  ->  ( ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G ) )  ->  E. n  e.  (
0 ... ( # `  z
) ) x  =  ( z cyclShift  n )
) ) ) ) )
3635impcom 446 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  (ClWWalks `  G
)  /\  E. n  e.  ( 0 ... ( # `
 z ) ) y  =  ( z cyclShift  n ) )  -> 
( ( ( # `  y )  =  (
# `  z )  /\  ( # `  x
)  =  ( # `  y ) )  -> 
( E. n  e.  ( 0 ... ( # `
 y ) ) x  =  ( y cyclShift  n )  ->  (
( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G )
)  ->  E. n  e.  ( 0 ... ( # `
 z ) ) x  =  ( z cyclShift  n ) ) ) ) )
37363adant1 1079 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  (ClWWalks `  G
)  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z
) ) y  =  ( z cyclShift  n )
)  ->  ( (
( # `  y )  =  ( # `  z
)  /\  ( # `  x
)  =  ( # `  y ) )  -> 
( E. n  e.  ( 0 ... ( # `
 y ) ) x  =  ( y cyclShift  n )  ->  (
( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G )
)  ->  E. n  e.  ( 0 ... ( # `
 z ) ) x  =  ( z cyclShift  n ) ) ) ) )
3837impcom 446 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( # `  y
)  =  ( # `  z )  /\  ( # `
 x )  =  ( # `  y
) )  /\  (
y  e.  (ClWWalks `  G
)  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z
) ) y  =  ( z cyclShift  n )
) )  ->  ( E. n  e.  (
0 ... ( # `  y
) ) x  =  ( y cyclShift  n )  ->  ( ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G ) )  ->  E. n  e.  (
0 ... ( # `  z
) ) x  =  ( z cyclShift  n )
) ) )
3938com13 88 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  (ClWWalks `  G
)  /\  y  e.  (ClWWalks `  G ) )  ->  ( E. n  e.  ( 0 ... ( # `
 y ) ) x  =  ( y cyclShift  n )  ->  (
( ( ( # `  y )  =  (
# `  z )  /\  ( # `  x
)  =  ( # `  y ) )  /\  ( y  e.  (ClWWalks `  G )  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z ) ) y  =  ( z cyclShift  n
) ) )  ->  E. n  e.  (
0 ... ( # `  z
) ) x  =  ( z cyclShift  n )
) ) )
40393impia 1261 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  (ClWWalks `  G
)  /\  y  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  y
) ) x  =  ( y cyclShift  n )
)  ->  ( (
( ( # `  y
)  =  ( # `  z )  /\  ( # `
 x )  =  ( # `  y
) )  /\  (
y  e.  (ClWWalks `  G
)  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z
) ) y  =  ( z cyclShift  n )
) )  ->  E. n  e.  ( 0 ... ( # `
 z ) ) x  =  ( z cyclShift  n ) ) )
4140impcom 446 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( # `  y )  =  (
# `  z )  /\  ( # `  x
)  =  ( # `  y ) )  /\  ( y  e.  (ClWWalks `  G )  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z ) ) y  =  ( z cyclShift  n
) ) )  /\  ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  y ) ) x  =  ( y cyclShift  n
) ) )  ->  E. n  e.  (
0 ... ( # `  z
) ) x  =  ( z cyclShift  n )
)
4213, 14, 413jca 1242 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( # `  y )  =  (
# `  z )  /\  ( # `  x
)  =  ( # `  y ) )  /\  ( y  e.  (ClWWalks `  G )  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z ) ) y  =  ( z cyclShift  n
) ) )  /\  ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  y ) ) x  =  ( y cyclShift  n
) ) )  -> 
( x  e.  (ClWWalks `  G )  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z ) ) x  =  ( z cyclShift  n
) ) )
434erclwwlkseq 26932 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  _V  /\  z  e.  _V )  ->  ( x  .~  z  <->  ( x  e.  (ClWWalks `  G
)  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z
) ) x  =  ( z cyclShift  n )
) ) )
44433adant2 1080 . . . . . . . . . . . . . 14  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  (
x  .~  z  <->  ( x  e.  (ClWWalks `  G )  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z
) ) x  =  ( z cyclShift  n )
) ) )
4542, 44syl5ibrcom 237 . . . . . . . . . . . . 13  |-  ( ( ( ( ( # `  y )  =  (
# `  z )  /\  ( # `  x
)  =  ( # `  y ) )  /\  ( y  e.  (ClWWalks `  G )  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z ) ) y  =  ( z cyclShift  n
) ) )  /\  ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  y ) ) x  =  ( y cyclShift  n
) ) )  -> 
( ( x  e. 
_V  /\  y  e.  _V  /\  z  e.  _V )  ->  x  .~  z
) )
4645exp31 630 . . . . . . . . . . . 12  |-  ( ( ( # `  y
)  =  ( # `  z )  /\  ( # `
 x )  =  ( # `  y
) )  ->  (
( y  e.  (ClWWalks `  G )  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z ) ) y  =  ( z cyclShift  n
) )  ->  (
( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  y ) ) x  =  ( y cyclShift  n
) )  ->  (
( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  x  .~  z ) ) ) )
4746com24 95 . . . . . . . . . . 11  |-  ( ( ( # `  y
)  =  ( # `  z )  /\  ( # `
 x )  =  ( # `  y
) )  ->  (
( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  ( ( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  y
) ) x  =  ( y cyclShift  n )
)  ->  ( (
y  e.  (ClWWalks `  G
)  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z
) ) y  =  ( z cyclShift  n )
)  ->  x  .~  z ) ) ) )
4847ex 450 . . . . . . . . . 10  |-  ( (
# `  y )  =  ( # `  z
)  ->  ( ( # `
 x )  =  ( # `  y
)  ->  ( (
x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  (
( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  y ) ) x  =  ( y cyclShift  n
) )  ->  (
( y  e.  (ClWWalks `  G )  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z ) ) y  =  ( z cyclShift  n
) )  ->  x  .~  z ) ) ) ) )
4948com4t 93 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  (
( x  e.  (ClWWalks `  G )  /\  y  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  y ) ) x  =  ( y cyclShift  n
) )  ->  (
( # `  y )  =  ( # `  z
)  ->  ( ( # `
 x )  =  ( # `  y
)  ->  ( (
y  e.  (ClWWalks `  G
)  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z
) ) y  =  ( z cyclShift  n )
)  ->  x  .~  z ) ) ) ) )
5012, 49sylbid 230 . . . . . . . 8  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  (
x  .~  y  ->  ( ( # `  y
)  =  ( # `  z )  ->  (
( # `  x )  =  ( # `  y
)  ->  ( (
y  e.  (ClWWalks `  G
)  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z
) ) y  =  ( z cyclShift  n )
)  ->  x  .~  z ) ) ) ) )
5150com25 99 . . . . . . 7  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  (
( y  e.  (ClWWalks `  G )  /\  z  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  z ) ) y  =  ( z cyclShift  n
) )  ->  (
( # `  y )  =  ( # `  z
)  ->  ( ( # `
 x )  =  ( # `  y
)  ->  ( x  .~  y  ->  x  .~  z ) ) ) ) )
5210, 51sylbid 230 . . . . . 6  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  (
y  .~  z  ->  ( ( # `  y
)  =  ( # `  z )  ->  (
( # `  x )  =  ( # `  y
)  ->  ( x  .~  y  ->  x  .~  z ) ) ) ) )
538, 52mpdd 43 . . . . 5  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  (
y  .~  z  ->  ( ( # `  x
)  =  ( # `  y )  ->  (
x  .~  y  ->  x  .~  z ) ) ) )
5453com24 95 . . . 4  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  (
x  .~  y  ->  ( ( # `  x
)  =  ( # `  y )  ->  (
y  .~  z  ->  x  .~  z ) ) ) )
556, 54mpdd 43 . . 3  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  (
x  .~  y  ->  ( y  .~  z  ->  x  .~  z ) ) )
5655impd 447 . 2  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  (
( x  .~  y  /\  y  .~  z
)  ->  x  .~  z ) )
571, 2, 3, 56mp3an 1424 1  |-  ( ( x  .~  y  /\  y  .~  z )  ->  x  .~  z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   {copab 4712   ` cfv 5888  (class class class)co 6650   0cc0 9936   ...cfz 12326   #chash 13117  Word cword 13291   cyclShift ccsh 13534  Vtxcvtx 25874  ClWWalkscclwwlks 26875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535  df-clwwlks 26877
This theorem is referenced by:  erclwwlks  26937
  Copyright terms: Public domain W3C validator