MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertr Structured version   Visualization version   Unicode version

Theorem ertr 7757
Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
Assertion
Ref Expression
ertr  |-  ( ph  ->  ( ( A R B  /\  B R C )  ->  A R C ) )

Proof of Theorem ertr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ersymb.1 . . . . . . 7  |-  ( ph  ->  R  Er  X )
2 errel 7751 . . . . . . 7  |-  ( R  Er  X  ->  Rel  R )
31, 2syl 17 . . . . . 6  |-  ( ph  ->  Rel  R )
4 simpr 477 . . . . . 6  |-  ( ( A R B  /\  B R C )  ->  B R C )
5 brrelex 5156 . . . . . 6  |-  ( ( Rel  R  /\  B R C )  ->  B  e.  _V )
63, 4, 5syl2an 494 . . . . 5  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  B  e.  _V )
7 simpr 477 . . . . 5  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  -> 
( A R B  /\  B R C ) )
8 breq2 4657 . . . . . . 7  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
9 breq1 4656 . . . . . . 7  |-  ( x  =  B  ->  (
x R C  <->  B R C ) )
108, 9anbi12d 747 . . . . . 6  |-  ( x  =  B  ->  (
( A R x  /\  x R C )  <->  ( A R B  /\  B R C ) ) )
1110spcegv 3294 . . . . 5  |-  ( B  e.  _V  ->  (
( A R B  /\  B R C )  ->  E. x
( A R x  /\  x R C ) ) )
126, 7, 11sylc 65 . . . 4  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  E. x ( A R x  /\  x R C ) )
13 simpl 473 . . . . . 6  |-  ( ( A R B  /\  B R C )  ->  A R B )
14 brrelex 5156 . . . . . 6  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )
153, 13, 14syl2an 494 . . . . 5  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  A  e.  _V )
16 brrelex2 5157 . . . . . 6  |-  ( ( Rel  R  /\  B R C )  ->  C  e.  _V )
173, 4, 16syl2an 494 . . . . 5  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  C  e.  _V )
18 brcog 5288 . . . . 5  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A ( R  o.  R ) C  <->  E. x ( A R x  /\  x R C ) ) )
1915, 17, 18syl2anc 693 . . . 4  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  -> 
( A ( R  o.  R ) C  <->  E. x ( A R x  /\  x R C ) ) )
2012, 19mpbird 247 . . 3  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  A ( R  o.  R ) C )
2120ex 450 . 2  |-  ( ph  ->  ( ( A R B  /\  B R C )  ->  A
( R  o.  R
) C ) )
22 df-er 7742 . . . . . 6  |-  ( R  Er  X  <->  ( Rel  R  /\  dom  R  =  X  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
2322simp3bi 1078 . . . . 5  |-  ( R  Er  X  ->  ( `' R  u.  ( R  o.  R )
)  C_  R )
241, 23syl 17 . . . 4  |-  ( ph  ->  ( `' R  u.  ( R  o.  R
) )  C_  R
)
2524unssbd 3791 . . 3  |-  ( ph  ->  ( R  o.  R
)  C_  R )
2625ssbrd 4696 . 2  |-  ( ph  ->  ( A ( R  o.  R ) C  ->  A R C ) )
2721, 26syld 47 1  |-  ( ph  ->  ( ( A R B  /\  B R C )  ->  A R C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574   class class class wbr 4653   `'ccnv 5113   dom cdm 5114    o. ccom 5118   Rel wrel 5119    Er wer 7739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-co 5123  df-er 7742
This theorem is referenced by:  ertrd  7758  erth  7791  iiner  7819  entr  8008  efginvrel2  18140  efgsrel  18147
  Copyright terms: Public domain W3C validator