| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ertr | Structured version Visualization version Unicode version | ||
| Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersymb.1 |
|
| Ref | Expression |
|---|---|
| ertr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersymb.1 |
. . . . . . 7
| |
| 2 | errel 7751 |
. . . . . . 7
| |
| 3 | 1, 2 | syl 17 |
. . . . . 6
|
| 4 | simpr 477 |
. . . . . 6
| |
| 5 | brrelex 5156 |
. . . . . 6
| |
| 6 | 3, 4, 5 | syl2an 494 |
. . . . 5
|
| 7 | simpr 477 |
. . . . 5
| |
| 8 | breq2 4657 |
. . . . . . 7
| |
| 9 | breq1 4656 |
. . . . . . 7
| |
| 10 | 8, 9 | anbi12d 747 |
. . . . . 6
|
| 11 | 10 | spcegv 3294 |
. . . . 5
|
| 12 | 6, 7, 11 | sylc 65 |
. . . 4
|
| 13 | simpl 473 |
. . . . . 6
| |
| 14 | brrelex 5156 |
. . . . . 6
| |
| 15 | 3, 13, 14 | syl2an 494 |
. . . . 5
|
| 16 | brrelex2 5157 |
. . . . . 6
| |
| 17 | 3, 4, 16 | syl2an 494 |
. . . . 5
|
| 18 | brcog 5288 |
. . . . 5
| |
| 19 | 15, 17, 18 | syl2anc 693 |
. . . 4
|
| 20 | 12, 19 | mpbird 247 |
. . 3
|
| 21 | 20 | ex 450 |
. 2
|
| 22 | df-er 7742 |
. . . . . 6
| |
| 23 | 22 | simp3bi 1078 |
. . . . 5
|
| 24 | 1, 23 | syl 17 |
. . . 4
|
| 25 | 24 | unssbd 3791 |
. . 3
|
| 26 | 25 | ssbrd 4696 |
. 2
|
| 27 | 21, 26 | syld 47 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-co 5123 df-er 7742 |
| This theorem is referenced by: ertrd 7758 erth 7791 iiner 7819 entr 8008 efginvrel2 18140 efgsrel 18147 |
| Copyright terms: Public domain | W3C validator |