| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iiner | Structured version Visualization version Unicode version | ||
| Description: The intersection of a nonempty family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| iiner |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.2z 4060 |
. . . 4
| |
| 2 | errel 7751 |
. . . . . 6
| |
| 3 | df-rel 5121 |
. . . . . 6
| |
| 4 | 2, 3 | sylib 208 |
. . . . 5
|
| 5 | 4 | reximi 3011 |
. . . 4
|
| 6 | iinss 4571 |
. . . 4
| |
| 7 | 1, 5, 6 | 3syl 18 |
. . 3
|
| 8 | df-rel 5121 |
. . 3
| |
| 9 | 7, 8 | sylibr 224 |
. 2
|
| 10 | id 22 |
. . . . . . . . 9
| |
| 11 | 10 | ersymb 7756 |
. . . . . . . 8
|
| 12 | 11 | biimpd 219 |
. . . . . . 7
|
| 13 | df-br 4654 |
. . . . . . 7
| |
| 14 | df-br 4654 |
. . . . . . 7
| |
| 15 | 12, 13, 14 | 3imtr3g 284 |
. . . . . 6
|
| 16 | 15 | ral2imi 2947 |
. . . . 5
|
| 17 | 16 | adantl 482 |
. . . 4
|
| 18 | df-br 4654 |
. . . . 5
| |
| 19 | opex 4932 |
. . . . . 6
| |
| 20 | eliin 4525 |
. . . . . 6
| |
| 21 | 19, 20 | ax-mp 5 |
. . . . 5
|
| 22 | 18, 21 | bitri 264 |
. . . 4
|
| 23 | df-br 4654 |
. . . . 5
| |
| 24 | opex 4932 |
. . . . . 6
| |
| 25 | eliin 4525 |
. . . . . 6
| |
| 26 | 24, 25 | ax-mp 5 |
. . . . 5
|
| 27 | 23, 26 | bitri 264 |
. . . 4
|
| 28 | 17, 22, 27 | 3imtr4g 285 |
. . 3
|
| 29 | 28 | imp 445 |
. 2
|
| 30 | r19.26 3064 |
. . . . 5
| |
| 31 | 10 | ertr 7757 |
. . . . . . . 8
|
| 32 | df-br 4654 |
. . . . . . . . 9
| |
| 33 | 13, 32 | anbi12i 733 |
. . . . . . . 8
|
| 34 | df-br 4654 |
. . . . . . . 8
| |
| 35 | 31, 33, 34 | 3imtr3g 284 |
. . . . . . 7
|
| 36 | 35 | ral2imi 2947 |
. . . . . 6
|
| 37 | 36 | adantl 482 |
. . . . 5
|
| 38 | 30, 37 | syl5bir 233 |
. . . 4
|
| 39 | df-br 4654 |
. . . . . 6
| |
| 40 | opex 4932 |
. . . . . . 7
| |
| 41 | eliin 4525 |
. . . . . . 7
| |
| 42 | 40, 41 | ax-mp 5 |
. . . . . 6
|
| 43 | 39, 42 | bitri 264 |
. . . . 5
|
| 44 | 22, 43 | anbi12i 733 |
. . . 4
|
| 45 | df-br 4654 |
. . . . 5
| |
| 46 | opex 4932 |
. . . . . 6
| |
| 47 | eliin 4525 |
. . . . . 6
| |
| 48 | 46, 47 | ax-mp 5 |
. . . . 5
|
| 49 | 45, 48 | bitri 264 |
. . . 4
|
| 50 | 38, 44, 49 | 3imtr4g 285 |
. . 3
|
| 51 | 50 | imp 445 |
. 2
|
| 52 | simpl 473 |
. . . . . . . . . 10
| |
| 53 | simpr 477 |
. . . . . . . . . 10
| |
| 54 | 52, 53 | erref 7762 |
. . . . . . . . 9
|
| 55 | df-br 4654 |
. . . . . . . . 9
| |
| 56 | 54, 55 | sylib 208 |
. . . . . . . 8
|
| 57 | 56 | expcom 451 |
. . . . . . 7
|
| 58 | 57 | ralimdv 2963 |
. . . . . 6
|
| 59 | 58 | com12 32 |
. . . . 5
|
| 60 | 59 | adantl 482 |
. . . 4
|
| 61 | r19.26 3064 |
. . . . . 6
| |
| 62 | r19.2z 4060 |
. . . . . . . 8
| |
| 63 | vex 3203 |
. . . . . . . . . . 11
| |
| 64 | 63, 63 | opeldm 5328 |
. . . . . . . . . 10
|
| 65 | erdm 7752 |
. . . . . . . . . . . 12
| |
| 66 | 65 | eleq2d 2687 |
. . . . . . . . . . 11
|
| 67 | 66 | biimpa 501 |
. . . . . . . . . 10
|
| 68 | 64, 67 | sylan2 491 |
. . . . . . . . 9
|
| 69 | 68 | rexlimivw 3029 |
. . . . . . . 8
|
| 70 | 62, 69 | syl 17 |
. . . . . . 7
|
| 71 | 70 | ex 450 |
. . . . . 6
|
| 72 | 61, 71 | syl5bir 233 |
. . . . 5
|
| 73 | 72 | expdimp 453 |
. . . 4
|
| 74 | 60, 73 | impbid 202 |
. . 3
|
| 75 | df-br 4654 |
. . . 4
| |
| 76 | opex 4932 |
. . . . 5
| |
| 77 | eliin 4525 |
. . . . 5
| |
| 78 | 76, 77 | ax-mp 5 |
. . . 4
|
| 79 | 75, 78 | bitri 264 |
. . 3
|
| 80 | 74, 79 | syl6bbr 278 |
. 2
|
| 81 | 9, 29, 51, 80 | iserd 7768 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-iin 4523 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-er 7742 |
| This theorem is referenced by: riiner 7820 efger 18131 |
| Copyright terms: Public domain | W3C validator |