MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsrel Structured version   Visualization version   Unicode version

Theorem efgsrel 18147
Description: The start and end of any extension sequence are related (i.e. evaluate to the same element of the quotient group to be created). (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgsrel  |-  ( F  e.  dom  S  -> 
( F `  0
)  .~  ( S `  F ) )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y,
z, w, v, n)    F( x, y, z, w, v, t, k, m, n)    I( k)    M( y, z, k)

Proof of Theorem efgsrel
Dummy variables  a 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . 6  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . . . 6  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . . . . 6  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . . . . 6  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
5 efgred.d . . . . . 6  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
6 efgred.s . . . . . 6  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
71, 2, 3, 4, 5, 6efgsdm 18143 . . . . 5  |-  ( F  e.  dom  S  <->  ( F  e.  (Word  W  \  { (/)
} )  /\  ( F `  0 )  e.  D  /\  A. a  e.  ( 1..^ ( # `  F ) ) ( F `  a )  e.  ran  ( T `
 ( F `  ( a  -  1 ) ) ) ) )
87simp1bi 1076 . . . 4  |-  ( F  e.  dom  S  ->  F  e.  (Word  W  \  { (/) } ) )
9 eldifsn 4317 . . . . 5  |-  ( F  e.  (Word  W  \  { (/) } )  <->  ( F  e. Word  W  /\  F  =/=  (/) ) )
10 lennncl 13325 . . . . 5  |-  ( ( F  e. Word  W  /\  F  =/=  (/) )  ->  ( # `
 F )  e.  NN )
119, 10sylbi 207 . . . 4  |-  ( F  e.  (Word  W  \  { (/) } )  -> 
( # `  F )  e.  NN )
12 fzo0end 12560 . . . 4  |-  ( (
# `  F )  e.  NN  ->  ( ( # `
 F )  - 
1 )  e.  ( 0..^ ( # `  F
) ) )
138, 11, 123syl 18 . . 3  |-  ( F  e.  dom  S  -> 
( ( # `  F
)  -  1 )  e.  ( 0..^ (
# `  F )
) )
14 nnm1nn0 11334 . . . . 5  |-  ( (
# `  F )  e.  NN  ->  ( ( # `
 F )  - 
1 )  e.  NN0 )
158, 11, 143syl 18 . . . 4  |-  ( F  e.  dom  S  -> 
( ( # `  F
)  -  1 )  e.  NN0 )
16 eleq1 2689 . . . . . . 7  |-  ( a  =  0  ->  (
a  e.  ( 0..^ ( # `  F
) )  <->  0  e.  ( 0..^ ( # `  F
) ) ) )
17 fveq2 6191 . . . . . . . 8  |-  ( a  =  0  ->  ( F `  a )  =  ( F ` 
0 ) )
1817breq2d 4665 . . . . . . 7  |-  ( a  =  0  ->  (
( F `  0
)  .~  ( F `  a )  <->  ( F `  0 )  .~  ( F `  0 ) ) )
1916, 18imbi12d 334 . . . . . 6  |-  ( a  =  0  ->  (
( a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) )  <->  ( 0  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  0 ) ) ) )
2019imbi2d 330 . . . . 5  |-  ( a  =  0  ->  (
( F  e.  dom  S  ->  ( a  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  a ) ) )  <-> 
( F  e.  dom  S  ->  ( 0  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  0 ) ) ) ) )
21 eleq1 2689 . . . . . . 7  |-  ( a  =  i  ->  (
a  e.  ( 0..^ ( # `  F
) )  <->  i  e.  ( 0..^ ( # `  F
) ) ) )
22 fveq2 6191 . . . . . . . 8  |-  ( a  =  i  ->  ( F `  a )  =  ( F `  i ) )
2322breq2d 4665 . . . . . . 7  |-  ( a  =  i  ->  (
( F `  0
)  .~  ( F `  a )  <->  ( F `  0 )  .~  ( F `  i ) ) )
2421, 23imbi12d 334 . . . . . 6  |-  ( a  =  i  ->  (
( a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) )  <->  ( i  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  i ) ) ) )
2524imbi2d 330 . . . . 5  |-  ( a  =  i  ->  (
( F  e.  dom  S  ->  ( a  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  a ) ) )  <-> 
( F  e.  dom  S  ->  ( i  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  i ) ) ) ) )
26 eleq1 2689 . . . . . . 7  |-  ( a  =  ( i  +  1 )  ->  (
a  e.  ( 0..^ ( # `  F
) )  <->  ( i  +  1 )  e.  ( 0..^ ( # `  F ) ) ) )
27 fveq2 6191 . . . . . . . 8  |-  ( a  =  ( i  +  1 )  ->  ( F `  a )  =  ( F `  ( i  +  1 ) ) )
2827breq2d 4665 . . . . . . 7  |-  ( a  =  ( i  +  1 )  ->  (
( F `  0
)  .~  ( F `  a )  <->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) )
2926, 28imbi12d 334 . . . . . 6  |-  ( a  =  ( i  +  1 )  ->  (
( a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) )  <->  ( (
i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) ) )
3029imbi2d 330 . . . . 5  |-  ( a  =  ( i  +  1 )  ->  (
( F  e.  dom  S  ->  ( a  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  a ) ) )  <-> 
( F  e.  dom  S  ->  ( ( i  +  1 )  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  ( i  +  1 ) ) ) ) ) )
31 eleq1 2689 . . . . . . 7  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( a  e.  ( 0..^ ( # `  F ) )  <->  ( ( # `
 F )  - 
1 )  e.  ( 0..^ ( # `  F
) ) ) )
32 fveq2 6191 . . . . . . . 8  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( F `  a )  =  ( F `  ( (
# `  F )  -  1 ) ) )
3332breq2d 4665 . . . . . . 7  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( ( F `  0 )  .~  ( F `  a
)  <->  ( F ` 
0 )  .~  ( F `  ( ( # `
 F )  - 
1 ) ) ) )
3431, 33imbi12d 334 . . . . . 6  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( (
a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) )  <->  ( (
( # `  F )  -  1 )  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  ( ( # `  F
)  -  1 ) ) ) ) )
3534imbi2d 330 . . . . 5  |-  ( a  =  ( ( # `  F )  -  1 )  ->  ( ( F  e.  dom  S  -> 
( a  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  a
) ) )  <->  ( F  e.  dom  S  ->  (
( ( # `  F
)  -  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  ( (
# `  F )  -  1 ) ) ) ) ) )
361, 2efger 18131 . . . . . . . 8  |-  .~  Er  W
3736a1i 11 . . . . . . 7  |-  ( ( F  e.  dom  S  /\  0  e.  (
0..^ ( # `  F
) ) )  ->  .~  Er  W )
38 eldifi 3732 . . . . . . . . 9  |-  ( F  e.  (Word  W  \  { (/) } )  ->  F  e. Word  W )
39 wrdf 13310 . . . . . . . . 9  |-  ( F  e. Word  W  ->  F : ( 0..^ (
# `  F )
) --> W )
408, 38, 393syl 18 . . . . . . . 8  |-  ( F  e.  dom  S  ->  F : ( 0..^ (
# `  F )
) --> W )
4140ffvelrnda 6359 . . . . . . 7  |-  ( ( F  e.  dom  S  /\  0  e.  (
0..^ ( # `  F
) ) )  -> 
( F `  0
)  e.  W )
4237, 41erref 7762 . . . . . 6  |-  ( ( F  e.  dom  S  /\  0  e.  (
0..^ ( # `  F
) ) )  -> 
( F `  0
)  .~  ( F `  0 ) )
4342ex 450 . . . . 5  |-  ( F  e.  dom  S  -> 
( 0  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  0
) ) )
44 elnn0uz 11725 . . . . . . . . . . . 12  |-  ( i  e.  NN0  <->  i  e.  (
ZZ>= `  0 ) )
45 peano2fzor 12575 . . . . . . . . . . . 12  |-  ( ( i  e.  ( ZZ>= ` 
0 )  /\  (
i  +  1 )  e.  ( 0..^ (
# `  F )
) )  ->  i  e.  ( 0..^ ( # `  F ) ) )
4644, 45sylanb 489 . . . . . . . . . . 11  |-  ( ( i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
i  e.  ( 0..^ ( # `  F
) ) )
47463adant1 1079 . . . . . . . . . 10  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
i  e.  ( 0..^ ( # `  F
) ) )
48473expia 1267 . . . . . . . . 9  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( i  +  1 )  e.  ( 0..^ ( # `  F ) )  -> 
i  e.  ( 0..^ ( # `  F
) ) ) )
4948imim1d 82 . . . . . . . 8  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( i  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  i ) )  ->  ( (
i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  i ) ) ) )
50403ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  ->  F : ( 0..^ (
# `  F )
) --> W )
5150, 47ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  i
)  e.  W )
52 nn0p1nn 11332 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  NN0  ->  ( i  +  1 )  e.  NN )
53523ad2ant2 1083 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( i  +  1 )  e.  NN )
54 nnuz 11723 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
5553, 54syl6eleq 2711 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( i  +  1 )  e.  ( ZZ>= ` 
1 ) )
56 elfzolt2b 12481 . . . . . . . . . . . . . . . 16  |-  ( ( i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( i  +  1 )  e.  ( ( i  +  1 )..^ ( # `  F ) ) )
57563ad2ant3 1084 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( i  +  1 )  e.  ( ( i  +  1 )..^ ( # `  F
) ) )
58 elfzo3 12486 . . . . . . . . . . . . . . 15  |-  ( ( i  +  1 )  e.  ( 1..^ (
# `  F )
)  <->  ( ( i  +  1 )  e.  ( ZZ>= `  1 )  /\  ( i  +  1 )  e.  ( ( i  +  1 )..^ ( # `  F
) ) ) )
5955, 57, 58sylanbrc 698 . . . . . . . . . . . . . 14  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( i  +  1 )  e.  ( 1..^ ( # `  F
) ) )
607simp3bi 1078 . . . . . . . . . . . . . . 15  |-  ( F  e.  dom  S  ->  A. a  e.  (
1..^ ( # `  F
) ) ( F `
 a )  e. 
ran  ( T `  ( F `  ( a  -  1 ) ) ) )
61603ad2ant1 1082 . . . . . . . . . . . . . 14  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  ->  A. a  e.  (
1..^ ( # `  F
) ) ( F `
 a )  e. 
ran  ( T `  ( F `  ( a  -  1 ) ) ) )
62 oveq1 6657 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  ( i  +  1 )  ->  (
a  -  1 )  =  ( ( i  +  1 )  - 
1 ) )
6362fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  ( i  +  1 )  ->  ( F `  ( a  -  1 ) )  =  ( F `  ( ( i  +  1 )  -  1 ) ) )
6463fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( i  +  1 )  ->  ( T `  ( F `  ( a  -  1 ) ) )  =  ( T `  ( F `  ( (
i  +  1 )  -  1 ) ) ) )
6564rneqd 5353 . . . . . . . . . . . . . . . 16  |-  ( a  =  ( i  +  1 )  ->  ran  ( T `  ( F `
 ( a  - 
1 ) ) )  =  ran  ( T `
 ( F `  ( ( i  +  1 )  -  1 ) ) ) )
6627, 65eleq12d 2695 . . . . . . . . . . . . . . 15  |-  ( a  =  ( i  +  1 )  ->  (
( F `  a
)  e.  ran  ( T `  ( F `  ( a  -  1 ) ) )  <->  ( F `  ( i  +  1 ) )  e.  ran  ( T `  ( F `
 ( ( i  +  1 )  - 
1 ) ) ) ) )
6766rspcv 3305 . . . . . . . . . . . . . 14  |-  ( ( i  +  1 )  e.  ( 1..^ (
# `  F )
)  ->  ( A. a  e.  ( 1..^ ( # `  F
) ) ( F `
 a )  e. 
ran  ( T `  ( F `  ( a  -  1 ) ) )  ->  ( F `  ( i  +  1 ) )  e.  ran  ( T `  ( F `
 ( ( i  +  1 )  - 
1 ) ) ) ) )
6859, 61, 67sylc 65 . . . . . . . . . . . . 13  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  (
i  +  1 ) )  e.  ran  ( T `  ( F `  ( ( i  +  1 )  -  1 ) ) ) )
69 nn0cn 11302 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  NN0  ->  i  e.  CC )
70693ad2ant2 1083 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
i  e.  CC )
71 ax-1cn 9994 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
72 pncan 10287 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  CC  /\  1  e.  CC )  ->  ( ( i  +  1 )  -  1 )  =  i )
7370, 71, 72sylancl 694 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( i  +  1 )  -  1 )  =  i )
7473fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  (
( i  +  1 )  -  1 ) )  =  ( F `
 i ) )
7574fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( T `  ( F `  ( (
i  +  1 )  -  1 ) ) )  =  ( T `
 ( F `  i ) ) )
7675rneqd 5353 . . . . . . . . . . . . 13  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  ->  ran  ( T `  ( F `  ( (
i  +  1 )  -  1 ) ) )  =  ran  ( T `  ( F `  i ) ) )
7768, 76eleqtrd 2703 . . . . . . . . . . . 12  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  (
i  +  1 ) )  e.  ran  ( T `  ( F `  i ) ) )
781, 2, 3, 4efgi2 18138 . . . . . . . . . . . 12  |-  ( ( ( F `  i
)  e.  W  /\  ( F `  ( i  +  1 ) )  e.  ran  ( T `
 ( F `  i ) ) )  ->  ( F `  i )  .~  ( F `  ( i  +  1 ) ) )
7951, 77, 78syl2anc 693 . . . . . . . . . . 11  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  i
)  .~  ( F `  ( i  +  1 ) ) )
8036a1i 11 . . . . . . . . . . . 12  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  ->  .~  Er  W )
8180ertr 7757 . . . . . . . . . . 11  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( ( F `
 0 )  .~  ( F `  i )  /\  ( F `  i )  .~  ( F `  ( i  +  1 ) ) )  ->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) )
8279, 81mpan2d 710 . . . . . . . . . 10  |-  ( ( F  e.  dom  S  /\  i  e.  NN0  /\  ( i  +  1 )  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( F ` 
0 )  .~  ( F `  i )  ->  ( F `  0
)  .~  ( F `  ( i  +  1 ) ) ) )
83823expia 1267 . . . . . . . . 9  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( i  +  1 )  e.  ( 0..^ ( # `  F ) )  -> 
( ( F ` 
0 )  .~  ( F `  i )  ->  ( F `  0
)  .~  ( F `  ( i  +  1 ) ) ) ) )
8483a2d 29 . . . . . . . 8  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( ( i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  i ) )  ->  ( (
i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) ) )
8549, 84syld 47 . . . . . . 7  |-  ( ( F  e.  dom  S  /\  i  e.  NN0 )  ->  ( ( i  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  i ) )  ->  ( (
i  +  1 )  e.  ( 0..^ (
# `  F )
)  ->  ( F `  0 )  .~  ( F `  ( i  +  1 ) ) ) ) )
8685expcom 451 . . . . . 6  |-  ( i  e.  NN0  ->  ( F  e.  dom  S  -> 
( ( i  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  i ) )  -> 
( ( i  +  1 )  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  (
i  +  1 ) ) ) ) ) )
8786a2d 29 . . . . 5  |-  ( i  e.  NN0  ->  ( ( F  e.  dom  S  ->  ( i  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  i
) ) )  -> 
( F  e.  dom  S  ->  ( ( i  +  1 )  e.  ( 0..^ ( # `  F ) )  -> 
( F `  0
)  .~  ( F `  ( i  +  1 ) ) ) ) ) )
8820, 25, 30, 35, 43, 87nn0ind 11472 . . . 4  |-  ( ( ( # `  F
)  -  1 )  e.  NN0  ->  ( F  e.  dom  S  -> 
( ( ( # `  F )  -  1 )  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  (
( # `  F )  -  1 ) ) ) ) )
8915, 88mpcom 38 . . 3  |-  ( F  e.  dom  S  -> 
( ( ( # `  F )  -  1 )  e.  ( 0..^ ( # `  F
) )  ->  ( F `  0 )  .~  ( F `  (
( # `  F )  -  1 ) ) ) )
9013, 89mpd 15 . 2  |-  ( F  e.  dom  S  -> 
( F `  0
)  .~  ( F `  ( ( # `  F
)  -  1 ) ) )
911, 2, 3, 4, 5, 6efgsval 18144 . 2  |-  ( F  e.  dom  S  -> 
( S `  F
)  =  ( F `
 ( ( # `  F )  -  1 ) ) )
9290, 91breqtrrd 4681 1  |-  ( F  e.  dom  S  -> 
( F `  0
)  .~  ( S `  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    \ cdif 3571   (/)c0 3915   {csn 4177   <.cop 4183   <.cotp 4185   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554    Er wer 7739   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   splice csplice 13296   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593  df-efg 18122
This theorem is referenced by:  efgredeu  18165  efgred2  18166
  Copyright terms: Public domain W3C validator