Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumex Structured version   Visualization version   Unicode version

Theorem esumex 30091
Description: An extended sum is a set by definition. (Contributed by Thierry Arnoux, 5-Sep-2017.)
Assertion
Ref Expression
esumex  |- Σ* k  e.  A B  e.  _V

Proof of Theorem esumex
StepHypRef Expression
1 df-esum 30090 . 2  |- Σ* k  e.  A B  =  U. (
( RR*ss  ( 0 [,] +oo ) ) tsums  ( k  e.  A  |->  B ) )
2 ovex 6678 . . 3  |-  ( (
RR*ss  ( 0 [,] +oo ) ) tsums  ( k  e.  A  |->  B ) )  e.  _V
32uniex 6953 . 2  |-  U. (
( RR*ss  ( 0 [,] +oo ) ) tsums  ( k  e.  A  |->  B ) )  e.  _V
41, 3eqeltri 2697 1  |- Σ* k  e.  A B  e.  _V
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1990   _Vcvv 3200   U.cuni 4436    |-> cmpt 4729  (class class class)co 6650   0cc0 9936   +oocpnf 10071   [,]cicc 12178   ↾s cress 15858   RR*scxrs 16160   tsums ctsu 21929  Σ*cesum 30089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-fv 5896  df-ov 6653  df-esum 30090
This theorem is referenced by:  esumcvg  30148  esumgect  30152  omssubaddlem  30361  omssubadd  30362
  Copyright terms: Public domain W3C validator