Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omssubaddlem Structured version   Visualization version   Unicode version

Theorem omssubaddlem 30361
Description: For any small margin  E, we can find a covering approaching the outer measure of a set  A by that margin. (Contributed by Thierry Arnoux, 18-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m  |-  M  =  (toOMeas `  R )
oms.o  |-  ( ph  ->  Q  e.  V )
oms.r  |-  ( ph  ->  R : Q --> ( 0 [,] +oo ) )
omssubaddlem.a  |-  ( ph  ->  A  C_  U. Q )
omssubaddlem.m  |-  ( ph  ->  ( M `  A
)  e.  RR )
omssubaddlem.e  |-  ( ph  ->  E  e.  RR+ )
Assertion
Ref Expression
omssubaddlem  |-  ( ph  ->  E. x  e.  {
z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }Σ* w  e.  x ( R `  w )  <  ( ( M `
 A )  +  E ) )
Distinct variable groups:    x, Q, z    x, R, z    x, V, z    ph, x, z   
w, A, x, z   
x, E    x, M    w, Q    w, R    w, V
Allowed substitution hints:    ph( w)    E( z, w)    M( z, w)

Proof of Theorem omssubaddlem
Dummy variables  e 
t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omssubaddlem.m . . . . . 6  |-  ( ph  ->  ( M `  A
)  e.  RR )
2 omssubaddlem.e . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
32rpred 11872 . . . . . 6  |-  ( ph  ->  E  e.  RR )
41, 3readdcld 10069 . . . . 5  |-  ( ph  ->  ( ( M `  A )  +  E
)  e.  RR )
54rexrd 10089 . . . 4  |-  ( ph  ->  ( ( M `  A )  +  E
)  e.  RR* )
6 oms.o . . . . . . . . 9  |-  ( ph  ->  Q  e.  V )
7 oms.r . . . . . . . . 9  |-  ( ph  ->  R : Q --> ( 0 [,] +oo ) )
8 omsf 30358 . . . . . . . . 9  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo ) )  ->  (toOMeas `  R ) : ~P U. dom  R --> ( 0 [,] +oo ) )
96, 7, 8syl2anc 693 . . . . . . . 8  |-  ( ph  ->  (toOMeas `  R ) : ~P U. dom  R --> ( 0 [,] +oo ) )
10 oms.m . . . . . . . . 9  |-  M  =  (toOMeas `  R )
1110feq1i 6036 . . . . . . . 8  |-  ( M : ~P U. dom  R --> ( 0 [,] +oo ) 
<->  (toOMeas `  R ) : ~P U. dom  R --> ( 0 [,] +oo ) )
129, 11sylibr 224 . . . . . . 7  |-  ( ph  ->  M : ~P U. dom  R --> ( 0 [,] +oo ) )
13 omssubaddlem.a . . . . . . . . 9  |-  ( ph  ->  A  C_  U. Q )
14 fdm 6051 . . . . . . . . . . 11  |-  ( R : Q --> ( 0 [,] +oo )  ->  dom  R  =  Q )
157, 14syl 17 . . . . . . . . . 10  |-  ( ph  ->  dom  R  =  Q )
1615unieqd 4446 . . . . . . . . 9  |-  ( ph  ->  U. dom  R  = 
U. Q )
1713, 16sseqtr4d 3642 . . . . . . . 8  |-  ( ph  ->  A  C_  U. dom  R
)
18 uniexg 6955 . . . . . . . . . . 11  |-  ( Q  e.  V  ->  U. Q  e.  _V )
196, 18syl 17 . . . . . . . . . 10  |-  ( ph  ->  U. Q  e.  _V )
2013, 19jca 554 . . . . . . . . 9  |-  ( ph  ->  ( A  C_  U. Q  /\  U. Q  e.  _V ) )
21 ssexg 4804 . . . . . . . . 9  |-  ( ( A  C_  U. Q  /\  U. Q  e.  _V )  ->  A  e.  _V )
22 elpwg 4166 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( A  e.  ~P U. dom  R  <-> 
A  C_  U. dom  R
) )
2320, 21, 223syl 18 . . . . . . . 8  |-  ( ph  ->  ( A  e.  ~P U.
dom  R  <->  A  C_  U. dom  R ) )
2417, 23mpbird 247 . . . . . . 7  |-  ( ph  ->  A  e.  ~P U. dom  R )
2512, 24ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( M `  A
)  e.  ( 0 [,] +oo ) )
26 elxrge0 12281 . . . . . . 7  |-  ( ( M `  A )  e.  ( 0 [,] +oo )  <->  ( ( M `
 A )  e. 
RR*  /\  0  <_  ( M `  A ) ) )
2726simprbi 480 . . . . . 6  |-  ( ( M `  A )  e.  ( 0 [,] +oo )  ->  0  <_ 
( M `  A
) )
2825, 27syl 17 . . . . 5  |-  ( ph  ->  0  <_  ( M `  A ) )
292rpge0d 11876 . . . . 5  |-  ( ph  ->  0  <_  E )
301, 3, 28, 29addge0d 10603 . . . 4  |-  ( ph  ->  0  <_  ( ( M `  A )  +  E ) )
31 elxrge0 12281 . . . 4  |-  ( ( ( M `  A
)  +  E )  e.  ( 0 [,] +oo )  <->  ( ( ( M `  A )  +  E )  e. 
RR*  /\  0  <_  ( ( M `  A
)  +  E ) ) )
325, 30, 31sylanbrc 698 . . 3  |-  ( ph  ->  ( ( M `  A )  +  E
)  e.  ( 0 [,] +oo ) )
3310fveq1i 6192 . . . . 5  |-  ( M `
 A )  =  ( (toOMeas `  R
) `  A )
34 omsfval 30356 . . . . . 6  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  C_  U. Q )  ->  ( (toOMeas `  R
) `  A )  = inf ( ran  ( x  e.  { z  e. 
~P dom  R  | 
( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ*
w  e.  x ( R `  w ) ) ,  ( 0 [,] +oo ) ,  <  ) )
356, 7, 13, 34syl3anc 1326 . . . . 5  |-  ( ph  ->  ( (toOMeas `  R
) `  A )  = inf ( ran  ( x  e.  { z  e. 
~P dom  R  | 
( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ*
w  e.  x ( R `  w ) ) ,  ( 0 [,] +oo ) ,  <  ) )
3633, 35syl5req 2669 . . . 4  |-  ( ph  -> inf ( ran  ( x  e.  { z  e. 
~P dom  R  | 
( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ*
w  e.  x ( R `  w ) ) ,  ( 0 [,] +oo ) ,  <  )  =  ( M `  A ) )
371, 2ltaddrpd 11905 . . . 4  |-  ( ph  ->  ( M `  A
)  <  ( ( M `  A )  +  E ) )
3836, 37eqbrtrd 4675 . . 3  |-  ( ph  -> inf ( ran  ( x  e.  { z  e. 
~P dom  R  | 
( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ*
w  e.  x ( R `  w ) ) ,  ( 0 [,] +oo ) ,  <  )  <  (
( M `  A
)  +  E ) )
39 iccssxr 12256 . . . . . 6  |-  ( 0 [,] +oo )  C_  RR*
40 xrltso 11974 . . . . . 6  |-  <  Or  RR*
41 soss 5053 . . . . . 6  |-  ( ( 0 [,] +oo )  C_ 
RR*  ->  (  <  Or  RR* 
->  <  Or  ( 0 [,] +oo ) ) )
4239, 40, 41mp2 9 . . . . 5  |-  <  Or  ( 0 [,] +oo )
4342a1i 11 . . . 4  |-  ( ph  ->  <  Or  ( 0 [,] +oo ) )
44 omscl 30357 . . . . . 6  |-  ( ( Q  e.  V  /\  R : Q --> ( 0 [,] +oo )  /\  A  e.  ~P U. dom  R )  ->  ran  ( x  e.  { z  e. 
~P dom  R  | 
( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ*
w  e.  x ( R `  w ) )  C_  ( 0 [,] +oo ) )
456, 7, 24, 44syl3anc 1326 . . . . 5  |-  ( ph  ->  ran  ( x  e. 
{ z  e.  ~P dom  R  |  ( A 
C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) )  C_  (
0 [,] +oo )
)
46 xrge0infss 29525 . . . . 5  |-  ( ran  ( x  e.  {
z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) )  C_  (
0 [,] +oo )  ->  E. e  e.  ( 0 [,] +oo )
( A. t  e. 
ran  ( x  e. 
{ z  e.  ~P dom  R  |  ( A 
C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) )  -.  t  <  e  /\  A. t  e.  ( 0 [,] +oo ) ( e  < 
t  ->  E. u  e.  ran  ( x  e. 
{ z  e.  ~P dom  R  |  ( A 
C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) ) u  < 
t ) ) )
4745, 46syl 17 . . . 4  |-  ( ph  ->  E. e  e.  ( 0 [,] +oo )
( A. t  e. 
ran  ( x  e. 
{ z  e.  ~P dom  R  |  ( A 
C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) )  -.  t  <  e  /\  A. t  e.  ( 0 [,] +oo ) ( e  < 
t  ->  E. u  e.  ran  ( x  e. 
{ z  e.  ~P dom  R  |  ( A 
C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) ) u  < 
t ) ) )
4843, 47infglb 8396 . . 3  |-  ( ph  ->  ( ( ( ( M `  A )  +  E )  e.  ( 0 [,] +oo )  /\ inf ( ran  (
x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) ) ,  ( 0 [,] +oo ) ,  <  )  <  (
( M `  A
)  +  E ) )  ->  E. u  e.  ran  ( x  e. 
{ z  e.  ~P dom  R  |  ( A 
C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) ) u  < 
( ( M `  A )  +  E
) ) )
4932, 38, 48mp2and 715 . 2  |-  ( ph  ->  E. u  e.  ran  ( x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) ) u  < 
( ( M `  A )  +  E
) )
50 eqid 2622 . . . . . . . 8  |-  ( x  e.  { z  e. 
~P dom  R  | 
( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ*
w  e.  x ( R `  w ) )  =  ( x  e.  { z  e. 
~P dom  R  | 
( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ*
w  e.  x ( R `  w ) )
51 esumex 30091 . . . . . . . 8  |- Σ* w  e.  x
( R `  w
)  e.  _V
5250, 51elrnmpti 5376 . . . . . . 7  |-  ( u  e.  ran  ( x  e.  { z  e. 
~P dom  R  | 
( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ*
w  e.  x ( R `  w ) )  <->  E. x  e.  {
z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) } u  = Σ* w  e.  x ( R `
 w ) )
5352anbi1i 731 . . . . . 6  |-  ( ( u  e.  ran  (
x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) )  /\  u  <  ( ( M `  A )  +  E
) )  <->  ( E. x  e.  { z  e.  ~P dom  R  | 
( A  C_  U. z  /\  z  ~<_  om ) } u  = Σ* w  e.  x
( R `  w
)  /\  u  <  ( ( M `  A
)  +  E ) ) )
54 r19.41v 3089 . . . . . 6  |-  ( E. x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  ( u  = Σ* w  e.  x ( R `  w )  /\  u  <  (
( M `  A
)  +  E ) )  <->  ( E. x  e.  { z  e.  ~P dom  R  |  ( A 
C_  U. z  /\  z  ~<_  om ) } u  = Σ* w  e.  x ( R `
 w )  /\  u  <  ( ( M `
 A )  +  E ) ) )
5553, 54bitr4i 267 . . . . 5  |-  ( ( u  e.  ran  (
x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) )  /\  u  <  ( ( M `  A )  +  E
) )  <->  E. x  e.  { z  e.  ~P dom  R  |  ( A 
C_  U. z  /\  z  ~<_  om ) }  ( u  = Σ* w  e.  x ( R `  w )  /\  u  <  (
( M `  A
)  +  E ) ) )
5655exbii 1774 . . . 4  |-  ( E. u ( u  e. 
ran  ( x  e. 
{ z  e.  ~P dom  R  |  ( A 
C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) )  /\  u  <  ( ( M `  A )  +  E
) )  <->  E. u E. x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  ( u  = Σ* w  e.  x ( R `  w )  /\  u  <  (
( M `  A
)  +  E ) ) )
57 df-rex 2918 . . . 4  |-  ( E. u  e.  ran  (
x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) ) u  < 
( ( M `  A )  +  E
)  <->  E. u ( u  e.  ran  ( x  e.  { z  e. 
~P dom  R  | 
( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ*
w  e.  x ( R `  w ) )  /\  u  < 
( ( M `  A )  +  E
) ) )
58 rexcom4 3225 . . . 4  |-  ( E. x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) } E. u
( u  = Σ* w  e.  x ( R `  w )  /\  u  <  ( ( M `  A )  +  E
) )  <->  E. u E. x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  ( u  = Σ* w  e.  x ( R `  w )  /\  u  <  (
( M `  A
)  +  E ) ) )
5956, 57, 583bitr4i 292 . . 3  |-  ( E. u  e.  ran  (
x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) ) u  < 
( ( M `  A )  +  E
)  <->  E. x  e.  {
z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) } E. u
( u  = Σ* w  e.  x ( R `  w )  /\  u  <  ( ( M `  A )  +  E
) ) )
60 breq1 4656 . . . . . 6  |-  ( u  = Σ* w  e.  x ( R `  w )  ->  ( u  < 
( ( M `  A )  +  E
)  <-> Σ* w  e.  x ( R `  w )  <  ( ( M `  A )  +  E
) ) )
6160biimpa 501 . . . . 5  |-  ( ( u  = Σ* w  e.  x
( R `  w
)  /\  u  <  ( ( M `  A
)  +  E ) )  -> Σ* w  e.  x
( R `  w
)  <  ( ( M `  A )  +  E ) )
6261exlimiv 1858 . . . 4  |-  ( E. u ( u  = Σ* w  e.  x ( R `
 w )  /\  u  <  ( ( M `
 A )  +  E ) )  -> Σ* w  e.  x ( R `  w )  <  (
( M `  A
)  +  E ) )
6362reximi 3011 . . 3  |-  ( E. x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) } E. u
( u  = Σ* w  e.  x ( R `  w )  /\  u  <  ( ( M `  A )  +  E
) )  ->  E. x  e.  { z  e.  ~P dom  R  |  ( A 
C_  U. z  /\  z  ~<_  om ) }Σ* w  e.  x ( R `  w )  <  ( ( M `
 A )  +  E ) )
6459, 63sylbi 207 . 2  |-  ( E. u  e.  ran  (
x  e.  { z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* w  e.  x
( R `  w
) ) u  < 
( ( M `  A )  +  E
)  ->  E. x  e.  { z  e.  ~P dom  R  |  ( A 
C_  U. z  /\  z  ~<_  om ) }Σ* w  e.  x ( R `  w )  <  ( ( M `
 A )  +  E ) )
6549, 64syl 17 1  |-  ( ph  ->  E. x  e.  {
z  e.  ~P dom  R  |  ( A  C_  U. z  /\  z  ~<_  om ) }Σ* w  e.  x ( R `  w )  <  ( ( M `
 A )  +  E ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    Or wor 5034   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065    ~<_ cdom 7953  infcinf 8347   RRcr 9935   0cc0 9936    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   RR+crp 11832   [,]cicc 12178  Σ*cesum 30089  toOMeascoms 30353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-tset 15960  df-ple 15961  df-ds 15964  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-ordt 16161  df-xrs 16162  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-cntz 17750  df-cmn 18195  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-ntr 20824  df-nei 20902  df-cn 21031  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tsms 21930  df-esum 30090  df-oms 30354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator