MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-opab Structured version   Visualization version   Unicode version

Theorem ex-opab 27289
Description: Example for df-opab 4713. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-opab  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  CC  /\  y  e.  CC  /\  (
x  +  1 )  =  y ) }  ->  3 R 4 )
Distinct variable group:    x, y
Allowed substitution hints:    R( x, y)

Proof of Theorem ex-opab
StepHypRef Expression
1 3cn 11095 . . 3  |-  3  e.  CC
2 4cn 11098 . . 3  |-  4  e.  CC
3 3p1e4 11153 . . 3  |-  ( 3  +  1 )  =  4
41elexi 3213 . . . 4  |-  3  e.  _V
52elexi 3213 . . . 4  |-  4  e.  _V
6 eleq1 2689 . . . . 5  |-  ( x  =  3  ->  (
x  e.  CC  <->  3  e.  CC ) )
7 oveq1 6657 . . . . . 6  |-  ( x  =  3  ->  (
x  +  1 )  =  ( 3  +  1 ) )
87eqeq1d 2624 . . . . 5  |-  ( x  =  3  ->  (
( x  +  1 )  =  y  <->  ( 3  +  1 )  =  y ) )
96, 83anbi13d 1401 . . . 4  |-  ( x  =  3  ->  (
( x  e.  CC  /\  y  e.  CC  /\  ( x  +  1
)  =  y )  <-> 
( 3  e.  CC  /\  y  e.  CC  /\  ( 3  +  1 )  =  y ) ) )
10 eleq1 2689 . . . . 5  |-  ( y  =  4  ->  (
y  e.  CC  <->  4  e.  CC ) )
11 eqeq2 2633 . . . . 5  |-  ( y  =  4  ->  (
( 3  +  1 )  =  y  <->  ( 3  +  1 )  =  4 ) )
1210, 113anbi23d 1402 . . . 4  |-  ( y  =  4  ->  (
( 3  e.  CC  /\  y  e.  CC  /\  ( 3  +  1 )  =  y )  <-> 
( 3  e.  CC  /\  4  e.  CC  /\  ( 3  +  1 )  =  4 ) ) )
13 eqid 2622 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  y  e.  CC  /\  (
x  +  1 )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  y  e.  CC  /\  (
x  +  1 )  =  y ) }
144, 5, 9, 12, 13brab 4998 . . 3  |-  ( 3 { <. x ,  y
>.  |  ( x  e.  CC  /\  y  e.  CC  /\  ( x  +  1 )  =  y ) } 4  <-> 
( 3  e.  CC  /\  4  e.  CC  /\  ( 3  +  1 )  =  4 ) )
151, 2, 3, 14mpbir3an 1244 . 2  |-  3 { <. x ,  y
>.  |  ( x  e.  CC  /\  y  e.  CC  /\  ( x  +  1 )  =  y ) } 4
16 breq 4655 . 2  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  CC  /\  y  e.  CC  /\  (
x  +  1 )  =  y ) }  ->  ( 3 R 4  <->  3 { <. x ,  y >.  |  ( x  e.  CC  /\  y  e.  CC  /\  (
x  +  1 )  =  y ) } 4 ) )
1715, 16mpbiri 248 1  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  CC  /\  y  e.  CC  /\  (
x  +  1 )  =  y ) }  ->  3 R 4 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   {copab 4712  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939   3c3 11071   4c4 11072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653  df-2 11079  df-3 11080  df-4 11081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator