MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0dom0 Structured version   Visualization version   Unicode version

Theorem f0dom0 6089
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
Assertion
Ref Expression
f0dom0  |-  ( F : X --> Y  -> 
( X  =  (/)  <->  F  =  (/) ) )

Proof of Theorem f0dom0
StepHypRef Expression
1 feq2 6027 . . . 4  |-  ( X  =  (/)  ->  ( F : X --> Y  <->  F : (/) --> Y ) )
2 f0bi 6088 . . . . 5  |-  ( F : (/) --> Y  <->  F  =  (/) )
32biimpi 206 . . . 4  |-  ( F : (/) --> Y  ->  F  =  (/) )
41, 3syl6bi 243 . . 3  |-  ( X  =  (/)  ->  ( F : X --> Y  ->  F  =  (/) ) )
54com12 32 . 2  |-  ( F : X --> Y  -> 
( X  =  (/)  ->  F  =  (/) ) )
6 feq1 6026 . . . 4  |-  ( F  =  (/)  ->  ( F : X --> Y  <->  (/) : X --> Y ) )
7 dm0 5339 . . . . 5  |-  dom  (/)  =  (/)
8 fdm 6051 . . . . 5  |-  ( (/) : X --> Y  ->  dom  (/)  =  X )
97, 8syl5reqr 2671 . . . 4  |-  ( (/) : X --> Y  ->  X  =  (/) )
106, 9syl6bi 243 . . 3  |-  ( F  =  (/)  ->  ( F : X --> Y  ->  X  =  (/) ) )
1110com12 32 . 2  |-  ( F : X --> Y  -> 
( F  =  (/)  ->  X  =  (/) ) )
125, 11impbid 202 1  |-  ( F : X --> Y  -> 
( X  =  (/)  <->  F  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483   (/)c0 3915   dom cdm 5114   -->wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892
This theorem is referenced by:  swrdn0  13430  elfrlmbasn0  20106  mavmulsolcl  20357
  Copyright terms: Public domain W3C validator