| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mavmulsolcl | Structured version Visualization version Unicode version | ||
| Description: Every solution of the
equation |
| Ref | Expression |
|---|---|
| mavmuldm.b |
|
| mavmuldm.c |
|
| mavmuldm.d |
|
| mavmuldm.t |
|
| mavmulsolcl.e |
|
| Ref | Expression |
|---|---|
| mavmulsolcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1 28 |
. 2
| |
| 2 | simpl 473 |
. . . . . . . . 9
| |
| 3 | 2 | adantl 482 |
. . . . . . . 8
|
| 4 | simpl1 1064 |
. . . . . . . 8
| |
| 5 | simpl2 1065 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | 3jca 1242 |
. . . . . . 7
|
| 7 | 6 | adantl 482 |
. . . . . 6
|
| 8 | mavmuldm.b |
. . . . . . 7
| |
| 9 | mavmuldm.c |
. . . . . . 7
| |
| 10 | mavmuldm.d |
. . . . . . 7
| |
| 11 | mavmuldm.t |
. . . . . . 7
| |
| 12 | 8, 9, 10, 11 | mavmuldm 20356 |
. . . . . 6
|
| 13 | 7, 12 | syl 17 |
. . . . 5
|
| 14 | simpl 473 |
. . . . . 6
| |
| 15 | 14 | intnand 962 |
. . . . 5
|
| 16 | ndmovg 6817 |
. . . . 5
| |
| 17 | 13, 15, 16 | syl2anc 693 |
. . . 4
|
| 18 | eqeq1 2626 |
. . . . . 6
| |
| 19 | elmapi 7879 |
. . . . . . . . . . . . . 14
| |
| 20 | f0dom0 6089 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 21 | 20 | biimprd 238 |
. . . . . . . . . . . . . . . . . . 19
|
| 22 | 21 | necon3d 2815 |
. . . . . . . . . . . . . . . . . 18
|
| 23 | 22 | com12 32 |
. . . . . . . . . . . . . . . . 17
|
| 24 | 23 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . 16
|
| 25 | 24 | com12 32 |
. . . . . . . . . . . . . . 15
|
| 26 | 25 | a1d 25 |
. . . . . . . . . . . . . 14
|
| 27 | 19, 26 | syl 17 |
. . . . . . . . . . . . 13
|
| 28 | mavmulsolcl.e |
. . . . . . . . . . . . 13
| |
| 29 | 27, 28 | eleq2s 2719 |
. . . . . . . . . . . 12
|
| 30 | 29 | impcom 446 |
. . . . . . . . . . 11
|
| 31 | 30 | impcom 446 |
. . . . . . . . . 10
|
| 32 | eqneqall 2805 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | syl5com 31 |
. . . . . . . . 9
|
| 34 | 33 | adantl 482 |
. . . . . . . 8
|
| 35 | 34 | com12 32 |
. . . . . . 7
|
| 36 | 35 | eqcoms 2630 |
. . . . . 6
|
| 37 | 18, 36 | syl6bi 243 |
. . . . 5
|
| 38 | 37 | com23 86 |
. . . 4
|
| 39 | 17, 38 | mpcom 38 |
. . 3
|
| 40 | 39 | ex 450 |
. 2
|
| 41 | 1, 40 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-mvmul 20347 |
| This theorem is referenced by: slesolvec 20485 cramerimplem2 20490 |
| Copyright terms: Public domain | W3C validator |