MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashimarn Structured version   Visualization version   Unicode version

Theorem hashimarn 13227
Description: The size of the image of a one-to-one function  E under the range of a function  F which is a one-to-one function into the domain of  E equals the size of the function  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.) (Proof shortened by AV, 4-May-2021.)
Assertion
Ref Expression
hashimarn  |-  ( ( E : dom  E -1-1-> ran 
E  /\  E  e.  V )  ->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  ( # `
 ( E " ran  F ) )  =  ( # `  F
) ) )

Proof of Theorem hashimarn
StepHypRef Expression
1 f1f 6101 . . . . . . 7  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  F : ( 0..^ (
# `  F )
) --> dom  E )
2 frn 6053 . . . . . . 7  |-  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  ran 
F  C_  dom  E )
31, 2syl 17 . . . . . 6  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  ran  F 
C_  dom  E )
43adantl 482 . . . . 5  |-  ( ( ( E : dom  E
-1-1-> ran  E  /\  E  e.  V )  /\  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )  ->  ran  F  C_  dom  E )
5 ssdmres 5420 . . . . 5  |-  ( ran 
F  C_  dom  E  <->  dom  ( E  |`  ran  F )  =  ran  F )
64, 5sylib 208 . . . 4  |-  ( ( ( E : dom  E
-1-1-> ran  E  /\  E  e.  V )  /\  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )  ->  dom  ( E  |`  ran  F
)  =  ran  F
)
76fveq2d 6195 . . 3  |-  ( ( ( E : dom  E
-1-1-> ran  E  /\  E  e.  V )  /\  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )  -> 
( # `  dom  ( E  |`  ran  F ) )  =  ( # `  ran  F ) )
8 f1fun 6103 . . . . . . . 8  |-  ( E : dom  E -1-1-> ran  E  ->  Fun  E )
9 funres 5929 . . . . . . . . 9  |-  ( Fun 
E  ->  Fun  ( E  |`  ran  F ) )
10 funfn 5918 . . . . . . . . 9  |-  ( Fun  ( E  |`  ran  F
)  <->  ( E  |`  ran  F )  Fn  dom  ( E  |`  ran  F
) )
119, 10sylib 208 . . . . . . . 8  |-  ( Fun 
E  ->  ( E  |` 
ran  F )  Fn 
dom  ( E  |`  ran  F ) )
128, 11syl 17 . . . . . . 7  |-  ( E : dom  E -1-1-> ran  E  ->  ( E  |`  ran  F )  Fn  dom  ( E  |`  ran  F
) )
1312ad2antrr 762 . . . . . 6  |-  ( ( ( E : dom  E
-1-1-> ran  E  /\  E  e.  V )  /\  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )  -> 
( E  |`  ran  F
)  Fn  dom  ( E  |`  ran  F ) )
14 hashfn 13164 . . . . . 6  |-  ( ( E  |`  ran  F )  Fn  dom  ( E  |`  ran  F )  -> 
( # `  ( E  |`  ran  F ) )  =  ( # `  dom  ( E  |`  ran  F
) ) )
1513, 14syl 17 . . . . 5  |-  ( ( ( E : dom  E
-1-1-> ran  E  /\  E  e.  V )  /\  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )  -> 
( # `  ( E  |`  ran  F ) )  =  ( # `  dom  ( E  |`  ran  F
) ) )
16 ovex 6678 . . . . . . . 8  |-  ( 0..^ ( # `  F
) )  e.  _V
17 fex 6490 . . . . . . . 8  |-  ( ( F : ( 0..^ ( # `  F
) ) --> dom  E  /\  ( 0..^ ( # `  F ) )  e. 
_V )  ->  F  e.  _V )
181, 16, 17sylancl 694 . . . . . . 7  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  F  e.  _V )
19 rnexg 7098 . . . . . . 7  |-  ( F  e.  _V  ->  ran  F  e.  _V )
2018, 19syl 17 . . . . . 6  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  ran  F  e.  _V )
21 simpll 790 . . . . . . 7  |-  ( ( ( E : dom  E
-1-1-> ran  E  /\  E  e.  V )  /\  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )  ->  E : dom  E -1-1-> ran  E )
22 f1ssres 6108 . . . . . . 7  |-  ( ( E : dom  E -1-1-> ran 
E  /\  ran  F  C_  dom  E )  ->  ( E  |`  ran  F ) : ran  F -1-1-> ran  E )
2321, 4, 22syl2anc 693 . . . . . 6  |-  ( ( ( E : dom  E
-1-1-> ran  E  /\  E  e.  V )  /\  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )  -> 
( E  |`  ran  F
) : ran  F -1-1-> ran 
E )
24 hashf1rn 13142 . . . . . 6  |-  ( ( ran  F  e.  _V  /\  ( E  |`  ran  F
) : ran  F -1-1-> ran 
E )  ->  ( # `
 ( E  |`  ran  F ) )  =  ( # `  ran  ( E  |`  ran  F
) ) )
2520, 23, 24syl2an2 875 . . . . 5  |-  ( ( ( E : dom  E
-1-1-> ran  E  /\  E  e.  V )  /\  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )  -> 
( # `  ( E  |`  ran  F ) )  =  ( # `  ran  ( E  |`  ran  F
) ) )
2615, 25eqtr3d 2658 . . . 4  |-  ( ( ( E : dom  E
-1-1-> ran  E  /\  E  e.  V )  /\  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )  -> 
( # `  dom  ( E  |`  ran  F ) )  =  ( # `  ran  ( E  |`  ran  F ) ) )
27 df-ima 5127 . . . . 5  |-  ( E
" ran  F )  =  ran  ( E  |`  ran  F )
2827fveq2i 6194 . . . 4  |-  ( # `  ( E " ran  F ) )  =  (
# `  ran  ( E  |`  ran  F ) )
2926, 28syl6reqr 2675 . . 3  |-  ( ( ( E : dom  E
-1-1-> ran  E  /\  E  e.  V )  /\  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )  -> 
( # `  ( E
" ran  F )
)  =  ( # `  dom  ( E  |`  ran  F ) ) )
30 hashf1rn 13142 . . . . 5  |-  ( ( ( 0..^ ( # `  F ) )  e. 
_V  /\  F :
( 0..^ ( # `  F ) ) -1-1-> dom  E )  ->  ( # `  F
)  =  ( # `  ran  F ) )
3116, 30mpan 706 . . . 4  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  ( # `
 F )  =  ( # `  ran  F ) )
3231adantl 482 . . 3  |-  ( ( ( E : dom  E
-1-1-> ran  E  /\  E  e.  V )  /\  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )  -> 
( # `  F )  =  ( # `  ran  F ) )
337, 29, 323eqtr4d 2666 . 2  |-  ( ( ( E : dom  E
-1-1-> ran  E  /\  E  e.  V )  /\  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )  -> 
( # `  ( E
" ran  F )
)  =  ( # `  F ) )
3433ex 450 1  |-  ( ( E : dom  E -1-1-> ran 
E  /\  E  e.  V )  ->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  ( # `
 ( E " ran  F ) )  =  ( # `  F
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650   0cc0 9936  ..^cfzo 12465   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-hash 13118
This theorem is referenced by:  hashimarni  13228
  Copyright terms: Public domain W3C validator