MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1b Structured version   Visualization version   Unicode version

Theorem ackbij1b 9061
Description: The Ackermann bijection, part 1b: the bijection from ackbij1 9060 restricts naturally to the powers of particular naturals. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
Assertion
Ref Expression
ackbij1b  |-  ( A  e.  om  ->  ( F " ~P A )  =  ( card `  ~P A ) )
Distinct variable groups:    x, F, y    x, A, y

Proof of Theorem ackbij1b
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 ackbij2lem1 9041 . . . . 5  |-  ( A  e.  om  ->  ~P A  C_  ( ~P om  i^i  Fin ) )
2 pwexg 4850 . . . . 5  |-  ( A  e.  om  ->  ~P A  e.  _V )
3 ackbij.f . . . . . . 7  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
43ackbij1lem17 9058 . . . . . 6  |-  F :
( ~P om  i^i  Fin ) -1-1-> om
5 f1imaeng 8016 . . . . . 6  |-  ( ( F : ( ~P
om  i^i  Fin ) -1-1-> om  /\  ~P A  C_  ( ~P om  i^i  Fin )  /\  ~P A  e. 
_V )  ->  ( F " ~P A ) 
~~  ~P A )
64, 5mp3an1 1411 . . . . 5  |-  ( ( ~P A  C_  ( ~P om  i^i  Fin )  /\  ~P A  e.  _V )  ->  ( F " ~P A )  ~~  ~P A )
71, 2, 6syl2anc 693 . . . 4  |-  ( A  e.  om  ->  ( F " ~P A ) 
~~  ~P A )
8 nnfi 8153 . . . . . 6  |-  ( A  e.  om  ->  A  e.  Fin )
9 pwfi 8261 . . . . . 6  |-  ( A  e.  Fin  <->  ~P A  e.  Fin )
108, 9sylib 208 . . . . 5  |-  ( A  e.  om  ->  ~P A  e.  Fin )
11 ficardid 8788 . . . . 5  |-  ( ~P A  e.  Fin  ->  (
card `  ~P A ) 
~~  ~P A )
12 ensym 8005 . . . . 5  |-  ( (
card `  ~P A ) 
~~  ~P A  ->  ~P A  ~~  ( card `  ~P A ) )
1310, 11, 123syl 18 . . . 4  |-  ( A  e.  om  ->  ~P A  ~~  ( card `  ~P A ) )
14 entr 8008 . . . 4  |-  ( ( ( F " ~P A )  ~~  ~P A  /\  ~P A  ~~  ( card `  ~P A ) )  ->  ( F " ~P A )  ~~  ( card `  ~P A ) )
157, 13, 14syl2anc 693 . . 3  |-  ( A  e.  om  ->  ( F " ~P A ) 
~~  ( card `  ~P A ) )
16 onfin2 8152 . . . . . . 7  |-  om  =  ( On  i^i  Fin )
17 inss2 3834 . . . . . . 7  |-  ( On 
i^i  Fin )  C_  Fin
1816, 17eqsstri 3635 . . . . . 6  |-  om  C_  Fin
19 ficardom 8787 . . . . . . 7  |-  ( ~P A  e.  Fin  ->  (
card `  ~P A )  e.  om )
2010, 19syl 17 . . . . . 6  |-  ( A  e.  om  ->  ( card `  ~P A )  e.  om )
2118, 20sseldi 3601 . . . . 5  |-  ( A  e.  om  ->  ( card `  ~P A )  e.  Fin )
22 php3 8146 . . . . . 6  |-  ( ( ( card `  ~P A )  e.  Fin  /\  ( F " ~P A )  C.  ( card `  ~P A ) )  ->  ( F " ~P A )  ~< 
( card `  ~P A ) )
2322ex 450 . . . . 5  |-  ( (
card `  ~P A )  e.  Fin  ->  (
( F " ~P A )  C.  ( card `  ~P A )  ->  ( F " ~P A )  ~<  ( card `  ~P A ) ) )
2421, 23syl 17 . . . 4  |-  ( A  e.  om  ->  (
( F " ~P A )  C.  ( card `  ~P A )  ->  ( F " ~P A )  ~<  ( card `  ~P A ) ) )
25 sdomnen 7984 . . . 4  |-  ( ( F " ~P A
)  ~<  ( card `  ~P A )  ->  -.  ( F " ~P A
)  ~~  ( card `  ~P A ) )
2624, 25syl6 35 . . 3  |-  ( A  e.  om  ->  (
( F " ~P A )  C.  ( card `  ~P A )  ->  -.  ( F " ~P A )  ~~  ( card `  ~P A ) ) )
2715, 26mt2d 131 . 2  |-  ( A  e.  om  ->  -.  ( F " ~P A
)  C.  ( card `  ~P A ) )
28 fvex 6201 . . . . . 6  |-  ( F `
 a )  e. 
_V
29 ackbij1lem3 9044 . . . . . . . . 9  |-  ( A  e.  om  ->  A  e.  ( ~P om  i^i  Fin ) )
30 elpwi 4168 . . . . . . . . 9  |-  ( a  e.  ~P A  -> 
a  C_  A )
313ackbij1lem12 9053 . . . . . . . . 9  |-  ( ( A  e.  ( ~P
om  i^i  Fin )  /\  a  C_  A )  ->  ( F `  a )  C_  ( F `  A )
)
3229, 30, 31syl2an 494 . . . . . . . 8  |-  ( ( A  e.  om  /\  a  e.  ~P A
)  ->  ( F `  a )  C_  ( F `  A )
)
333ackbij1lem10 9051 . . . . . . . . . . 11  |-  F :
( ~P om  i^i  Fin ) --> om
34 peano1 7085 . . . . . . . . . . 11  |-  (/)  e.  om
3533, 34f0cli 6370 . . . . . . . . . 10  |-  ( F `
 a )  e. 
om
36 nnord 7073 . . . . . . . . . 10  |-  ( ( F `  a )  e.  om  ->  Ord  ( F `  a ) )
3735, 36ax-mp 5 . . . . . . . . 9  |-  Ord  ( F `  a )
3833, 34f0cli 6370 . . . . . . . . . 10  |-  ( F `
 A )  e. 
om
39 nnord 7073 . . . . . . . . . 10  |-  ( ( F `  A )  e.  om  ->  Ord  ( F `  A ) )
4038, 39ax-mp 5 . . . . . . . . 9  |-  Ord  ( F `  A )
41 ordsucsssuc 7023 . . . . . . . . 9  |-  ( ( Ord  ( F `  a )  /\  Ord  ( F `  A ) )  ->  ( ( F `  a )  C_  ( F `  A
)  <->  suc  ( F `  a )  C_  suc  ( F `  A ) ) )
4237, 40, 41mp2an 708 . . . . . . . 8  |-  ( ( F `  a ) 
C_  ( F `  A )  <->  suc  ( F `
 a )  C_  suc  ( F `  A
) )
4332, 42sylib 208 . . . . . . 7  |-  ( ( A  e.  om  /\  a  e.  ~P A
)  ->  suc  ( F `
 a )  C_  suc  ( F `  A
) )
443ackbij1lem14 9055 . . . . . . . . 9  |-  ( A  e.  om  ->  ( F `  { A } )  =  suc  ( F `  A ) )
453ackbij1lem8 9049 . . . . . . . . 9  |-  ( A  e.  om  ->  ( F `  { A } )  =  (
card `  ~P A ) )
4644, 45eqtr3d 2658 . . . . . . . 8  |-  ( A  e.  om  ->  suc  ( F `  A )  =  ( card `  ~P A ) )
4746adantr 481 . . . . . . 7  |-  ( ( A  e.  om  /\  a  e.  ~P A
)  ->  suc  ( F `
 A )  =  ( card `  ~P A ) )
4843, 47sseqtrd 3641 . . . . . 6  |-  ( ( A  e.  om  /\  a  e.  ~P A
)  ->  suc  ( F `
 a )  C_  ( card `  ~P A ) )
49 sucssel 5819 . . . . . 6  |-  ( ( F `  a )  e.  _V  ->  ( suc  ( F `  a
)  C_  ( card `  ~P A )  -> 
( F `  a
)  e.  ( card `  ~P A ) ) )
5028, 48, 49mpsyl 68 . . . . 5  |-  ( ( A  e.  om  /\  a  e.  ~P A
)  ->  ( F `  a )  e.  (
card `  ~P A ) )
5150ralrimiva 2966 . . . 4  |-  ( A  e.  om  ->  A. a  e.  ~P  A ( F `
 a )  e.  ( card `  ~P A ) )
52 f1fun 6103 . . . . . 6  |-  ( F : ( ~P om  i^i  Fin ) -1-1-> om  ->  Fun 
F )
534, 52ax-mp 5 . . . . 5  |-  Fun  F
54 f1dm 6105 . . . . . . 7  |-  ( F : ( ~P om  i^i  Fin ) -1-1-> om  ->  dom 
F  =  ( ~P
om  i^i  Fin )
)
554, 54ax-mp 5 . . . . . 6  |-  dom  F  =  ( ~P om  i^i  Fin )
561, 55syl6sseqr 3652 . . . . 5  |-  ( A  e.  om  ->  ~P A  C_  dom  F )
57 funimass4 6247 . . . . 5  |-  ( ( Fun  F  /\  ~P A  C_  dom  F )  ->  ( ( F
" ~P A ) 
C_  ( card `  ~P A )  <->  A. a  e.  ~P  A ( F `
 a )  e.  ( card `  ~P A ) ) )
5853, 56, 57sylancr 695 . . . 4  |-  ( A  e.  om  ->  (
( F " ~P A )  C_  ( card `  ~P A )  <->  A. a  e.  ~P  A ( F `  a )  e.  (
card `  ~P A ) ) )
5951, 58mpbird 247 . . 3  |-  ( A  e.  om  ->  ( F " ~P A ) 
C_  ( card `  ~P A ) )
60 sspss 3706 . . 3  |-  ( ( F " ~P A
)  C_  ( card `  ~P A )  <->  ( ( F " ~P A ) 
C.  ( card `  ~P A )  \/  ( F " ~P A )  =  ( card `  ~P A ) ) )
6159, 60sylib 208 . 2  |-  ( A  e.  om  ->  (
( F " ~P A )  C.  ( card `  ~P A )  \/  ( F " ~P A )  =  (
card `  ~P A ) ) )
62 orel1 397 . 2  |-  ( -.  ( F " ~P A )  C.  ( card `  ~P A )  ->  ( ( ( F " ~P A
)  C.  ( card `  ~P A )  \/  ( F " ~P A )  =  (
card `  ~P A ) )  ->  ( F " ~P A )  =  ( card `  ~P A ) ) )
6327, 61, 62sylc 65 1  |-  ( A  e.  om  ->  ( F " ~P A )  =  ( card `  ~P A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574    C. wpss 3575   ~Pcpw 4158   {csn 4177   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   "cima 5117   Ord word 5722   Oncon0 5723   suc csuc 5725   Fun wfun 5882   -1-1->wf1 5885   ` cfv 5888   omcom 7065    ~~ cen 7952    ~< csdm 7954   Fincfn 7955   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990
This theorem is referenced by:  ackbij2lem2  9062
  Copyright terms: Public domain W3C validator