MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3lem2 Structured version   Visualization version   Unicode version

Theorem gsumval3lem2 18307
Description: Lemma 2 for gsumval3 18308. (Contributed by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b  |-  B  =  ( Base `  G
)
gsumval3.0  |-  .0.  =  ( 0g `  G )
gsumval3.p  |-  .+  =  ( +g  `  G )
gsumval3.z  |-  Z  =  (Cntz `  G )
gsumval3.g  |-  ( ph  ->  G  e.  Mnd )
gsumval3.a  |-  ( ph  ->  A  e.  V )
gsumval3.f  |-  ( ph  ->  F : A --> B )
gsumval3.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumval3.m  |-  ( ph  ->  M  e.  NN )
gsumval3.h  |-  ( ph  ->  H : ( 1 ... M ) -1-1-> A
)
gsumval3.n  |-  ( ph  ->  ( F supp  .0.  )  C_ 
ran  H )
gsumval3.w  |-  W  =  ( ( F  o.  H ) supp  .0.  )
Assertion
Ref Expression
gsumval3lem2  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  ( H  o.  f
) ) ) `  ( # `  W ) ) )
Distinct variable groups:    .+ , f    A, f    ph, f    f, G   
f, M    B, f    f, F    f, H    f, W
Allowed substitution hints:    V( f)    .0. ( f)    Z( f)

Proof of Theorem gsumval3lem2
Dummy variables  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.h . . . . . . 7  |-  ( ph  ->  H : ( 1 ... M ) -1-1-> A
)
2 f1f 6101 . . . . . . 7  |-  ( H : ( 1 ... M ) -1-1-> A  ->  H : ( 1 ... M ) --> A )
31, 2syl 17 . . . . . 6  |-  ( ph  ->  H : ( 1 ... M ) --> A )
4 fzfid 12772 . . . . . 6  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
5 gsumval3.a . . . . . 6  |-  ( ph  ->  A  e.  V )
6 fex2 7121 . . . . . 6  |-  ( ( H : ( 1 ... M ) --> A  /\  ( 1 ... M )  e.  Fin  /\  A  e.  V )  ->  H  e.  _V )
73, 4, 5, 6syl3anc 1326 . . . . 5  |-  ( ph  ->  H  e.  _V )
8 vex 3203 . . . . 5  |-  f  e. 
_V
9 coexg 7117 . . . . 5  |-  ( ( H  e.  _V  /\  f  e.  _V )  ->  ( H  o.  f
)  e.  _V )
107, 8, 9sylancl 694 . . . 4  |-  ( ph  ->  ( H  o.  f
)  e.  _V )
1110ad2antrr 762 . . 3  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H  o.  f
)  e.  _V )
12 gsumval3.b . . . . 5  |-  B  =  ( Base `  G
)
13 gsumval3.0 . . . . 5  |-  .0.  =  ( 0g `  G )
14 gsumval3.p . . . . 5  |-  .+  =  ( +g  `  G )
15 gsumval3.z . . . . 5  |-  Z  =  (Cntz `  G )
16 gsumval3.g . . . . 5  |-  ( ph  ->  G  e.  Mnd )
17 gsumval3.f . . . . 5  |-  ( ph  ->  F : A --> B )
18 gsumval3.c . . . . 5  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
19 gsumval3.m . . . . 5  |-  ( ph  ->  M  e.  NN )
20 gsumval3.n . . . . 5  |-  ( ph  ->  ( F supp  .0.  )  C_ 
ran  H )
21 gsumval3.w . . . . 5  |-  W  =  ( ( F  o.  H ) supp  .0.  )
2212, 13, 14, 15, 16, 5, 17, 18, 19, 1, 20, 21gsumval3lem1 18306 . . . 4  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H  o.  f
) : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
23 resexg 5442 . . . . . . . . 9  |-  ( H  e.  _V  ->  ( H  |`  W )  e. 
_V )
247, 23syl 17 . . . . . . . 8  |-  ( ph  ->  ( H  |`  W )  e.  _V )
2524ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H  |`  W )  e.  _V )
261ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  H : ( 1 ... M ) -1-1-> A )
27 suppssdm 7308 . . . . . . . . . . . 12  |-  ( ( F  o.  H ) supp 
.0.  )  C_  dom  ( F  o.  H
)
2821, 27eqsstri 3635 . . . . . . . . . . 11  |-  W  C_  dom  ( F  o.  H
)
29 fco 6058 . . . . . . . . . . . . 13  |-  ( ( F : A --> B  /\  H : ( 1 ... M ) --> A )  ->  ( F  o.  H ) : ( 1 ... M ) --> B )
3017, 3, 29syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  o.  H
) : ( 1 ... M ) --> B )
31 fdm 6051 . . . . . . . . . . . 12  |-  ( ( F  o.  H ) : ( 1 ... M ) --> B  ->  dom  ( F  o.  H
)  =  ( 1 ... M ) )
3230, 31syl 17 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( F  o.  H )  =  ( 1 ... M ) )
3328, 32syl5sseq 3653 . . . . . . . . . 10  |-  ( ph  ->  W  C_  ( 1 ... M ) )
3433ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  W  C_  ( 1 ... M ) )
35 f1ores 6151 . . . . . . . . 9  |-  ( ( H : ( 1 ... M ) -1-1-> A  /\  W  C_  ( 1 ... M ) )  ->  ( H  |`  W ) : W -1-1-onto-> ( H " W ) )
3626, 34, 35syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H  |`  W ) : W -1-1-onto-> ( H " W
) )
3721imaeq2i 5464 . . . . . . . . . . 11  |-  ( H
" W )  =  ( H " (
( F  o.  H
) supp  .0.  ) )
38 fex 6490 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
3917, 5, 38syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  _V )
40 ovex 6678 . . . . . . . . . . . . . . 15  |-  ( 1 ... M )  e. 
_V
41 fex 6490 . . . . . . . . . . . . . . 15  |-  ( ( H : ( 1 ... M ) --> A  /\  ( 1 ... M )  e.  _V )  ->  H  e.  _V )
423, 40, 41sylancl 694 . . . . . . . . . . . . . 14  |-  ( ph  ->  H  e.  _V )
4339, 42jca 554 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  e.  _V  /\  H  e.  _V )
)
44 f1fun 6103 . . . . . . . . . . . . . . 15  |-  ( H : ( 1 ... M ) -1-1-> A  ->  Fun  H )
451, 44syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  Fun  H )
4645, 20jca 554 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Fun  H  /\  ( F supp  .0.  )  C_  ran  H ) )
47 imacosupp 7335 . . . . . . . . . . . . 13  |-  ( ( F  e.  _V  /\  H  e.  _V )  ->  ( ( Fun  H  /\  ( F supp  .0.  )  C_ 
ran  H )  -> 
( H " (
( F  o.  H
) supp  .0.  ) )  =  ( F supp  .0.  ) ) )
4843, 46, 47sylc 65 . . . . . . . . . . . 12  |-  ( ph  ->  ( H " (
( F  o.  H
) supp  .0.  ) )  =  ( F supp  .0.  ) )
4948adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( H " ( ( F  o.  H ) supp  .0.  )
)  =  ( F supp 
.0.  ) )
5037, 49syl5eq 2668 . . . . . . . . . 10  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( H " W )  =  ( F supp  .0.  ) )
5150adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H " W
)  =  ( F supp 
.0.  ) )
52 f1oeq3 6129 . . . . . . . . 9  |-  ( ( H " W )  =  ( F supp  .0.  )  ->  ( ( H  |`  W ) : W -1-1-onto-> ( H " W )  <->  ( H  |`  W ) : W -1-1-onto-> ( F supp  .0.  ) ) )
5351, 52syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( ( H  |`  W ) : W -1-1-onto-> ( H " W )  <->  ( H  |`  W ) : W -1-1-onto-> ( F supp  .0.  ) ) )
5436, 53mpbid 222 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H  |`  W ) : W -1-1-onto-> ( F supp  .0.  )
)
55 f1oen3g 7971 . . . . . . 7  |-  ( ( ( H  |`  W )  e.  _V  /\  ( H  |`  W ) : W -1-1-onto-> ( F supp  .0.  )
)  ->  W  ~~  ( F supp  .0.  ) )
5625, 54, 55syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  W  ~~  ( F supp  .0.  ) )
57 fzfi 12771 . . . . . . . . 9  |-  ( 1 ... M )  e. 
Fin
58 ssfi 8180 . . . . . . . . 9  |-  ( ( ( 1 ... M
)  e.  Fin  /\  W  C_  ( 1 ... M ) )  ->  W  e.  Fin )
5957, 33, 58sylancr 695 . . . . . . . 8  |-  ( ph  ->  W  e.  Fin )
6059ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  W  e.  Fin )
61 f1f1orn 6148 . . . . . . . . . . . . 13  |-  ( H : ( 1 ... M ) -1-1-> A  ->  H : ( 1 ... M ) -1-1-onto-> ran  H )
621, 61syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  H : ( 1 ... M ) -1-1-onto-> ran  H
)
63 f1oen3g 7971 . . . . . . . . . . . 12  |-  ( ( H  e.  _V  /\  H : ( 1 ... M ) -1-1-onto-> ran  H )  -> 
( 1 ... M
)  ~~  ran  H )
647, 62, 63syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( 1 ... M
)  ~~  ran  H )
65 enfi 8176 . . . . . . . . . . 11  |-  ( ( 1 ... M ) 
~~  ran  H  ->  ( ( 1 ... M
)  e.  Fin  <->  ran  H  e. 
Fin ) )
6664, 65syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1 ... M )  e.  Fin  <->  ran  H  e.  Fin ) )
6757, 66mpbii 223 . . . . . . . . 9  |-  ( ph  ->  ran  H  e.  Fin )
68 ssfi 8180 . . . . . . . . 9  |-  ( ( ran  H  e.  Fin  /\  ( F supp  .0.  )  C_ 
ran  H )  -> 
( F supp  .0.  )  e.  Fin )
6967, 20, 68syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( F supp  .0.  )  e.  Fin )
7069ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( F supp  .0.  )  e.  Fin )
71 hashen 13135 . . . . . . 7  |-  ( ( W  e.  Fin  /\  ( F supp  .0.  )  e. 
Fin )  ->  (
( # `  W )  =  ( # `  ( F supp  .0.  ) )  <->  W  ~~  ( F supp  .0.  ) ) )
7260, 70, 71syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( ( # `  W
)  =  ( # `  ( F supp  .0.  )
)  <->  W  ~~  ( F supp 
.0.  ) ) )
7356, 72mpbird 247 . . . . 5  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( # `  W )  =  ( # `  ( F supp  .0.  ) ) )
7473fveq2d 6195 . . . 4  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
(  seq 1 (  .+  ,  ( F  o.  ( H  o.  f
) ) ) `  ( # `  W ) )  =  (  seq 1 (  .+  , 
( F  o.  ( H  o.  f )
) ) `  ( # `
 ( F supp  .0.  ) ) ) )
7522, 74jca 554 . . 3  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( ( H  o.  f ) : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )  /\  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  W
) )  =  (  seq 1 (  .+  ,  ( F  o.  ( H  o.  f
) ) ) `  ( # `  ( F supp 
.0.  ) ) ) ) )
76 f1oeq1 6127 . . . . 5  |-  ( g  =  ( H  o.  f )  ->  (
g : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  <->  ( H  o.  f ) : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )
) )
77 coeq2 5280 . . . . . . . 8  |-  ( g  =  ( H  o.  f )  ->  ( F  o.  g )  =  ( F  o.  ( H  o.  f
) ) )
7877seqeq3d 12809 . . . . . . 7  |-  ( g  =  ( H  o.  f )  ->  seq 1 (  .+  , 
( F  o.  g
) )  =  seq 1 (  .+  , 
( F  o.  ( H  o.  f )
) ) )
7978fveq1d 6193 . . . . . 6  |-  ( g  =  ( H  o.  f )  ->  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) )  =  (  seq 1 ( 
.+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  ( F supp  .0.  ) ) ) )
8079eqeq2d 2632 . . . . 5  |-  ( g  =  ( H  o.  f )  ->  (
(  seq 1 (  .+  ,  ( F  o.  ( H  o.  f
) ) ) `  ( # `  W ) )  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) )  <->  (  seq 1 (  .+  , 
( F  o.  ( H  o.  f )
) ) `  ( # `
 W ) )  =  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  ( F supp  .0.  ) ) ) ) )
8176, 80anbi12d 747 . . . 4  |-  ( g  =  ( H  o.  f )  ->  (
( g : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )  /\  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  W
) )  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  ( F supp 
.0.  ) ) ) )  <->  ( ( H  o.  f ) : ( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp 
.0.  )  /\  (  seq 1 (  .+  , 
( F  o.  ( H  o.  f )
) ) `  ( # `
 W ) )  =  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  ( F supp  .0.  ) ) ) ) ) )
8281spcegv 3294 . . 3  |-  ( ( H  o.  f )  e.  _V  ->  (
( ( H  o.  f ) : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )  /\  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  W
) )  =  (  seq 1 (  .+  ,  ( F  o.  ( H  o.  f
) ) ) `  ( # `  ( F supp 
.0.  ) ) ) )  ->  E. g
( g : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )  /\  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  W
) )  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  ( F supp 
.0.  ) ) ) ) ) )
8311, 75, 82sylc 65 . 2  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  E. g ( g : ( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp 
.0.  )  /\  (  seq 1 (  .+  , 
( F  o.  ( H  o.  f )
) ) `  ( # `
 W ) )  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  ( F supp  .0.  ) ) ) ) )
8416ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  G  e.  Mnd )
855ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  A  e.  V )
8617ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  F : A --> B )
8718ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  ran  F  C_  ( Z `  ran  F ) )
8821neeq1i 2858 . . . . . . . . . 10  |-  ( W  =/=  (/)  <->  ( ( F  o.  H ) supp  .0.  )  =/=  (/) )
89 supp0cosupp0 7334 . . . . . . . . . . . 12  |-  ( ( F  e.  _V  /\  H  e.  _V )  ->  ( ( F supp  .0.  )  =  (/)  ->  (
( F  o.  H
) supp  .0.  )  =  (/) ) )
9089necon3d 2815 . . . . . . . . . . 11  |-  ( ( F  e.  _V  /\  H  e.  _V )  ->  ( ( ( F  o.  H ) supp  .0.  )  =/=  (/)  ->  ( F supp  .0.  )  =/=  (/) ) )
9139, 42, 90syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F  o.  H ) supp  .0.  )  =/=  (/)  ->  ( F supp  .0.  )  =/=  (/) ) )
9288, 91syl5bi 232 . . . . . . . . 9  |-  ( ph  ->  ( W  =/=  (/)  ->  ( F supp  .0.  )  =/=  (/) ) )
9392imp 445 . . . . . . . 8  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( F supp  .0.  )  =/=  (/) )
9493adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( F supp  .0.  )  =/=  (/) )
9520ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( F supp  .0.  )  C_ 
ran  H )
96 frn 6053 . . . . . . . . . 10  |-  ( H : ( 1 ... M ) --> A  ->  ran  H  C_  A )
973, 96syl 17 . . . . . . . . 9  |-  ( ph  ->  ran  H  C_  A
)
9897ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  ran  H  C_  A )
9995, 98sstrd 3613 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( F supp  .0.  )  C_  A )
10012, 13, 14, 15, 84, 85, 86, 87, 70, 94, 99gsumval3eu 18305 . . . . . 6  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  E! x E. g ( g : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  /\  x  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) ) )
101 iota1 5865 . . . . . 6  |-  ( E! x E. g ( g : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  /\  x  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) )  ->  ( E. g
( g : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )  /\  x  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) )  <-> 
( iota x E. g
( g : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )  /\  x  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) ) )  =  x ) )
102100, 101syl 17 . . . . 5  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( E. g ( g : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  /\  x  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) )  <-> 
( iota x E. g
( g : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )  /\  x  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) ) )  =  x ) )
103 eqid 2622 . . . . . . 7  |-  ( F supp 
.0.  )  =  ( F supp  .0.  )
104 simprl 794 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  -.  A  e.  ran  ... )
10512, 13, 14, 15, 84, 85, 86, 87, 70, 94, 103, 104gsumval3a 18304 . . . . . 6  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( G  gsumg  F )  =  ( iota x E. g
( g : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )  /\  x  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) ) ) )
106105eqeq1d 2624 . . . . 5  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( ( G  gsumg  F )  =  x  <->  ( iota x E. g ( g : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  /\  x  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) ) )  =  x ) )
107102, 106bitr4d 271 . . . 4  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( E. g ( g : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  /\  x  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) )  <-> 
( G  gsumg  F )  =  x ) )
108107alrimiv 1855 . . 3  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  A. x ( E. g
( g : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )  /\  x  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) )  <-> 
( G  gsumg  F )  =  x ) )
109 fvex 6201 . . . 4  |-  (  seq 1 (  .+  , 
( F  o.  ( H  o.  f )
) ) `  ( # `
 W ) )  e.  _V
110 eqeq1 2626 . . . . . . 7  |-  ( x  =  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  W
) )  ->  (
x  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) )  <->  (  seq 1 (  .+  , 
( F  o.  ( H  o.  f )
) ) `  ( # `
 W ) )  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  ( F supp  .0.  ) ) ) ) )
111110anbi2d 740 . . . . . 6  |-  ( x  =  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  W
) )  ->  (
( g : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )  /\  x  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) )  <-> 
( g : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )  /\  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  W
) )  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  ( F supp 
.0.  ) ) ) ) ) )
112111exbidv 1850 . . . . 5  |-  ( x  =  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  W
) )  ->  ( E. g ( g : ( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp 
.0.  )  /\  x  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  ( F supp  .0.  ) ) ) )  <->  E. g ( g : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  /\  (  seq 1 (  .+  ,  ( F  o.  ( H  o.  f
) ) ) `  ( # `  W ) )  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) ) ) )
113 eqeq2 2633 . . . . 5  |-  ( x  =  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  W
) )  ->  (
( G  gsumg  F )  =  x  <-> 
( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  ( H  o.  f
) ) ) `  ( # `  W ) ) ) )
114112, 113bibi12d 335 . . . 4  |-  ( x  =  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  W
) )  ->  (
( E. g ( g : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  /\  x  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) )  <-> 
( G  gsumg  F )  =  x )  <->  ( E. g
( g : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )  /\  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  W
) )  =  (  seq 1 (  .+  ,  ( F  o.  g ) ) `  ( # `  ( F supp 
.0.  ) ) ) )  <->  ( G  gsumg  F )  =  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  W
) ) ) ) )
115109, 114spcv 3299 . . 3  |-  ( A. x ( E. g
( g : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )  /\  x  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) )  <-> 
( G  gsumg  F )  =  x )  ->  ( E. g ( g : ( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp 
.0.  )  /\  (  seq 1 (  .+  , 
( F  o.  ( H  o.  f )
) ) `  ( # `
 W ) )  =  (  seq 1
(  .+  ,  ( F  o.  g )
) `  ( # `  ( F supp  .0.  ) ) ) )  <->  ( G  gsumg  F )  =  (  seq 1
(  .+  ,  ( F  o.  ( H  o.  f ) ) ) `
 ( # `  W
) ) ) )
116108, 115syl 17 . 2  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( E. g ( g : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  /\  (  seq 1 (  .+  ,  ( F  o.  ( H  o.  f
) ) ) `  ( # `  W ) )  =  (  seq 1 (  .+  , 
( F  o.  g
) ) `  ( # `
 ( F supp  .0.  ) ) ) )  <-> 
( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  ( H  o.  f
) ) ) `  ( # `  W ) ) ) )
11783, 116mpbid 222 1  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  ( H  o.  f
) ) ) `  ( # `  W ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470    =/= wne 2794   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   iotacio 5849   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650   supp csupp 7295    ~~ cen 7952   Fincfn 7955   1c1 9937    < clt 10074   NNcn 11020   ...cfz 12326    seqcseq 12801   #chash 13117   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cntz 17750
This theorem is referenced by:  gsumval3  18308
  Copyright terms: Public domain W3C validator