MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3lem1 Structured version   Visualization version   Unicode version

Theorem gsumval3lem1 18306
Description: Lemma 1 for gsumval3 18308. (Contributed by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b  |-  B  =  ( Base `  G
)
gsumval3.0  |-  .0.  =  ( 0g `  G )
gsumval3.p  |-  .+  =  ( +g  `  G )
gsumval3.z  |-  Z  =  (Cntz `  G )
gsumval3.g  |-  ( ph  ->  G  e.  Mnd )
gsumval3.a  |-  ( ph  ->  A  e.  V )
gsumval3.f  |-  ( ph  ->  F : A --> B )
gsumval3.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumval3.m  |-  ( ph  ->  M  e.  NN )
gsumval3.h  |-  ( ph  ->  H : ( 1 ... M ) -1-1-> A
)
gsumval3.n  |-  ( ph  ->  ( F supp  .0.  )  C_ 
ran  H )
gsumval3.w  |-  W  =  ( ( F  o.  H ) supp  .0.  )
Assertion
Ref Expression
gsumval3lem1  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H  o.  f
) : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
Distinct variable groups:    .+ , f    A, f    ph, f    f, G   
f, M    B, f    f, F    f, H    f, W
Allowed substitution hints:    V( f)    .0. ( f)    Z( f)

Proof of Theorem gsumval3lem1
StepHypRef Expression
1 gsumval3.h . . . . . . 7  |-  ( ph  ->  H : ( 1 ... M ) -1-1-> A
)
21ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  H : ( 1 ... M ) -1-1-> A )
3 gsumval3.w . . . . . . . . 9  |-  W  =  ( ( F  o.  H ) supp  .0.  )
4 suppssdm 7308 . . . . . . . . 9  |-  ( ( F  o.  H ) supp 
.0.  )  C_  dom  ( F  o.  H
)
53, 4eqsstri 3635 . . . . . . . 8  |-  W  C_  dom  ( F  o.  H
)
6 gsumval3.f . . . . . . . . . 10  |-  ( ph  ->  F : A --> B )
7 f1f 6101 . . . . . . . . . . 11  |-  ( H : ( 1 ... M ) -1-1-> A  ->  H : ( 1 ... M ) --> A )
81, 7syl 17 . . . . . . . . . 10  |-  ( ph  ->  H : ( 1 ... M ) --> A )
9 fco 6058 . . . . . . . . . 10  |-  ( ( F : A --> B  /\  H : ( 1 ... M ) --> A )  ->  ( F  o.  H ) : ( 1 ... M ) --> B )
106, 8, 9syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( F  o.  H
) : ( 1 ... M ) --> B )
11 fdm 6051 . . . . . . . . 9  |-  ( ( F  o.  H ) : ( 1 ... M ) --> B  ->  dom  ( F  o.  H
)  =  ( 1 ... M ) )
1210, 11syl 17 . . . . . . . 8  |-  ( ph  ->  dom  ( F  o.  H )  =  ( 1 ... M ) )
135, 12syl5sseq 3653 . . . . . . 7  |-  ( ph  ->  W  C_  ( 1 ... M ) )
1413ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  W  C_  ( 1 ... M ) )
15 f1ores 6151 . . . . . 6  |-  ( ( H : ( 1 ... M ) -1-1-> A  /\  W  C_  ( 1 ... M ) )  ->  ( H  |`  W ) : W -1-1-onto-> ( H " W ) )
162, 14, 15syl2anc 693 . . . . 5  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H  |`  W ) : W -1-1-onto-> ( H " W
) )
173imaeq2i 5464 . . . . . . 7  |-  ( H
" W )  =  ( H " (
( F  o.  H
) supp  .0.  ) )
18 gsumval3.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  V )
19 fex 6490 . . . . . . . . . . 11  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
206, 18, 19syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  F  e.  _V )
21 ovex 6678 . . . . . . . . . . . 12  |-  ( 1 ... M )  e. 
_V
22 fex 6490 . . . . . . . . . . . 12  |-  ( ( H : ( 1 ... M ) --> A  /\  ( 1 ... M )  e.  _V )  ->  H  e.  _V )
237, 21, 22sylancl 694 . . . . . . . . . . 11  |-  ( H : ( 1 ... M ) -1-1-> A  ->  H  e.  _V )
241, 23syl 17 . . . . . . . . . 10  |-  ( ph  ->  H  e.  _V )
25 f1fun 6103 . . . . . . . . . . . 12  |-  ( H : ( 1 ... M ) -1-1-> A  ->  Fun  H )
261, 25syl 17 . . . . . . . . . . 11  |-  ( ph  ->  Fun  H )
27 gsumval3.n . . . . . . . . . . 11  |-  ( ph  ->  ( F supp  .0.  )  C_ 
ran  H )
2826, 27jca 554 . . . . . . . . . 10  |-  ( ph  ->  ( Fun  H  /\  ( F supp  .0.  )  C_  ran  H ) )
2920, 24, 28jca31 557 . . . . . . . . 9  |-  ( ph  ->  ( ( F  e. 
_V  /\  H  e.  _V )  /\  ( Fun  H  /\  ( F supp 
.0.  )  C_  ran  H ) ) )
3029ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( ( F  e. 
_V  /\  H  e.  _V )  /\  ( Fun  H  /\  ( F supp 
.0.  )  C_  ran  H ) ) )
31 imacosupp 7335 . . . . . . . . 9  |-  ( ( F  e.  _V  /\  H  e.  _V )  ->  ( ( Fun  H  /\  ( F supp  .0.  )  C_ 
ran  H )  -> 
( H " (
( F  o.  H
) supp  .0.  ) )  =  ( F supp  .0.  ) ) )
3231imp 445 . . . . . . . 8  |-  ( ( ( F  e.  _V  /\  H  e.  _V )  /\  ( Fun  H  /\  ( F supp  .0.  )  C_  ran  H ) )  -> 
( H " (
( F  o.  H
) supp  .0.  ) )  =  ( F supp  .0.  ) )
3330, 32syl 17 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H " (
( F  o.  H
) supp  .0.  ) )  =  ( F supp  .0.  ) )
3417, 33syl5eq 2668 . . . . . 6  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H " W
)  =  ( F supp 
.0.  ) )
35 f1oeq3 6129 . . . . . 6  |-  ( ( H " W )  =  ( F supp  .0.  )  ->  ( ( H  |`  W ) : W -1-1-onto-> ( H " W )  <->  ( H  |`  W ) : W -1-1-onto-> ( F supp  .0.  ) ) )
3634, 35syl 17 . . . . 5  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( ( H  |`  W ) : W -1-1-onto-> ( H " W )  <->  ( H  |`  W ) : W -1-1-onto-> ( F supp  .0.  ) ) )
3716, 36mpbid 222 . . . 4  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H  |`  W ) : W -1-1-onto-> ( F supp  .0.  )
)
38 isof1o 6573 . . . . 5  |-  ( f 
Isom  <  ,  <  (
( 1 ... ( # `
 W ) ) ,  W )  -> 
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
3938ad2antll 765 . . . 4  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
40 f1oco 6159 . . . 4  |-  ( ( ( H  |`  W ) : W -1-1-onto-> ( F supp  .0.  )  /\  f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )  ->  (
( H  |`  W )  o.  f ) : ( 1 ... ( # `
 W ) ) -1-1-onto-> ( F supp  .0.  ) )
4137, 39, 40syl2anc 693 . . 3  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( ( H  |`  W )  o.  f
) : ( 1 ... ( # `  W
) ) -1-1-onto-> ( F supp  .0.  )
)
42 f1of 6137 . . . . 5  |-  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  ->  f :
( 1 ... ( # `
 W ) ) --> W )
43 frn 6053 . . . . 5  |-  ( f : ( 1 ... ( # `  W
) ) --> W  ->  ran  f  C_  W )
4439, 42, 433syl 18 . . . 4  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  ran  f  C_  W )
45 cores 5638 . . . 4  |-  ( ran  f  C_  W  ->  ( ( H  |`  W )  o.  f )  =  ( H  o.  f
) )
46 f1oeq1 6127 . . . 4  |-  ( ( ( H  |`  W )  o.  f )  =  ( H  o.  f
)  ->  ( (
( H  |`  W )  o.  f ) : ( 1 ... ( # `
 W ) ) -1-1-onto-> ( F supp  .0.  )  <->  ( H  o.  f ) : ( 1 ... ( # `  W ) ) -1-1-onto-> ( F supp 
.0.  ) ) )
4744, 45, 463syl 18 . . 3  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( ( ( H  |`  W )  o.  f
) : ( 1 ... ( # `  W
) ) -1-1-onto-> ( F supp  .0.  )  <->  ( H  o.  f ) : ( 1 ... ( # `  W
) ) -1-1-onto-> ( F supp  .0.  )
) )
4841, 47mpbid 222 . 2  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H  o.  f
) : ( 1 ... ( # `  W
) ) -1-1-onto-> ( F supp  .0.  )
)
49 fzfi 12771 . . . . . . . . . 10  |-  ( 1 ... M )  e. 
Fin
5049a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
51 fex2 7121 . . . . . . . . 9  |-  ( ( H : ( 1 ... M ) --> A  /\  ( 1 ... M )  e.  Fin  /\  A  e.  V )  ->  H  e.  _V )
528, 50, 18, 51syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  H  e.  _V )
53 resexg 5442 . . . . . . . 8  |-  ( H  e.  _V  ->  ( H  |`  W )  e. 
_V )
5452, 53syl 17 . . . . . . 7  |-  ( ph  ->  ( H  |`  W )  e.  _V )
5554ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H  |`  W )  e.  _V )
563a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  W  =  ( ( F  o.  H ) supp  .0.  ) )
5756imaeq2d 5466 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H " W
)  =  ( H
" ( ( F  o.  H ) supp  .0.  ) ) )
5820, 52, 28jca31 557 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F  e. 
_V  /\  H  e.  _V )  /\  ( Fun  H  /\  ( F supp 
.0.  )  C_  ran  H ) ) )
5958ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( ( F  e. 
_V  /\  H  e.  _V )  /\  ( Fun  H  /\  ( F supp 
.0.  )  C_  ran  H ) ) )
6059, 32syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H " (
( F  o.  H
) supp  .0.  ) )  =  ( F supp  .0.  ) )
6157, 60eqtrd 2656 . . . . . . . 8  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H " W
)  =  ( F supp 
.0.  ) )
6261, 35syl 17 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( ( H  |`  W ) : W -1-1-onto-> ( H " W )  <->  ( H  |`  W ) : W -1-1-onto-> ( F supp  .0.  ) ) )
6316, 62mpbid 222 . . . . . 6  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H  |`  W ) : W -1-1-onto-> ( F supp  .0.  )
)
64 f1oen3g 7971 . . . . . 6  |-  ( ( ( H  |`  W )  e.  _V  /\  ( H  |`  W ) : W -1-1-onto-> ( F supp  .0.  )
)  ->  W  ~~  ( F supp  .0.  ) )
6555, 63, 64syl2anc 693 . . . . 5  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  W  ~~  ( F supp  .0.  ) )
66 ssfi 8180 . . . . . . . 8  |-  ( ( ( 1 ... M
)  e.  Fin  /\  W  C_  ( 1 ... M ) )  ->  W  e.  Fin )
6749, 13, 66sylancr 695 . . . . . . 7  |-  ( ph  ->  W  e.  Fin )
6867ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  W  e.  Fin )
69 f1f1orn 6148 . . . . . . . . . . . 12  |-  ( H : ( 1 ... M ) -1-1-> A  ->  H : ( 1 ... M ) -1-1-onto-> ran  H )
701, 69syl 17 . . . . . . . . . . 11  |-  ( ph  ->  H : ( 1 ... M ) -1-1-onto-> ran  H
)
71 f1oen3g 7971 . . . . . . . . . . 11  |-  ( ( H  e.  _V  /\  H : ( 1 ... M ) -1-1-onto-> ran  H )  -> 
( 1 ... M
)  ~~  ran  H )
7252, 70, 71syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... M
)  ~~  ran  H )
73 enfi 8176 . . . . . . . . . 10  |-  ( ( 1 ... M ) 
~~  ran  H  ->  ( ( 1 ... M
)  e.  Fin  <->  ran  H  e. 
Fin ) )
7472, 73syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( 1 ... M )  e.  Fin  <->  ran  H  e.  Fin ) )
7549, 74mpbii 223 . . . . . . . 8  |-  ( ph  ->  ran  H  e.  Fin )
76 ssfi 8180 . . . . . . . 8  |-  ( ( ran  H  e.  Fin  /\  ( F supp  .0.  )  C_ 
ran  H )  -> 
( F supp  .0.  )  e.  Fin )
7775, 27, 76syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( F supp  .0.  )  e.  Fin )
7877ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( F supp  .0.  )  e.  Fin )
79 hashen 13135 . . . . . 6  |-  ( ( W  e.  Fin  /\  ( F supp  .0.  )  e. 
Fin )  ->  (
( # `  W )  =  ( # `  ( F supp  .0.  ) )  <->  W  ~~  ( F supp  .0.  ) ) )
8068, 78, 79syl2anc 693 . . . . 5  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( ( # `  W
)  =  ( # `  ( F supp  .0.  )
)  <->  W  ~~  ( F supp 
.0.  ) ) )
8165, 80mpbird 247 . . . 4  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( # `  W )  =  ( # `  ( F supp  .0.  ) ) )
8281oveq2d 6666 . . 3  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( 1 ... ( # `
 W ) )  =  ( 1 ... ( # `  ( F supp  .0.  ) ) ) )
83 f1oeq2 6128 . . 3  |-  ( ( 1 ... ( # `  W ) )  =  ( 1 ... ( # `
 ( F supp  .0.  ) ) )  -> 
( ( H  o.  f ) : ( 1 ... ( # `  W ) ) -1-1-onto-> ( F supp 
.0.  )  <->  ( H  o.  f ) : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )
) )
8482, 83syl 17 . 2  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( ( H  o.  f ) : ( 1 ... ( # `  W ) ) -1-1-onto-> ( F supp 
.0.  )  <->  ( H  o.  f ) : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )
) )
8548, 84mpbid 222 1  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( H  o.  f
) : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650   supp csupp 7295    ~~ cen 7952   Fincfn 7955   1c1 9937    < clt 10074   NNcn 11020   ...cfz 12326   #chash 13117   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  gsumval3lem2  18307
  Copyright terms: Public domain W3C validator