MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem31 Structured version   Visualization version   Unicode version

Theorem fin23lem31 9165
Description: Lemma for fin23 9211. The residual is has a strictly smaller range than the previous sequence. This will be iterated to build an unbounded chain. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
fin23lem17.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
fin23lem.b  |-  P  =  { v  e.  om  |  |^| ran  U  C_  ( t `  v
) }
fin23lem.c  |-  Q  =  ( w  e.  om  |->  ( iota_ x  e.  P  ( x  i^i  P ) 
~~  w ) )
fin23lem.d  |-  R  =  ( w  e.  om  |->  ( iota_ x  e.  ( om  \  P ) ( x  i^i  ( om  \  P ) ) 
~~  w ) )
fin23lem.e  |-  Z  =  if ( P  e. 
Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  o.  Q ) )
Assertion
Ref Expression
fin23lem31  |-  ( ( t : om -1-1-> V  /\  G  e.  F  /\  U. ran  t  C_  G )  ->  U. ran  Z 
C.  U. ran  t )
Distinct variable groups:    g, i,
t, u, v, x, z, a    F, a, t    V, a    w, a, x, z, P    v,
a, R, i, u    U, a, i, u, v, z    Z, a    g, a, G, t, x
Allowed substitution hints:    P( v, u, t, g, i)    Q( x, z, w, v, u, t, g, i, a)    R( x, z, w, t, g)    U( x, w, t, g)    F( x, z, w, v, u, g, i)    G( z, w, v, u, i)    V( x, z, w, v, u, t, g, i)    Z( x, z, w, v, u, t, g, i)

Proof of Theorem fin23lem31
StepHypRef Expression
1 fin23lem17.f . . . 4  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
21ssfin3ds 9152 . . 3  |-  ( ( G  e.  F  /\  U.
ran  t  C_  G
)  ->  U. ran  t  e.  F )
3 fin23lem.a . . . . . 6  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
4 fin23lem.b . . . . . 6  |-  P  =  { v  e.  om  |  |^| ran  U  C_  ( t `  v
) }
5 fin23lem.c . . . . . 6  |-  Q  =  ( w  e.  om  |->  ( iota_ x  e.  P  ( x  i^i  P ) 
~~  w ) )
6 fin23lem.d . . . . . 6  |-  R  =  ( w  e.  om  |->  ( iota_ x  e.  ( om  \  P ) ( x  i^i  ( om  \  P ) ) 
~~  w ) )
7 fin23lem.e . . . . . 6  |-  Z  =  if ( P  e. 
Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  o.  Q ) )
83, 1, 4, 5, 6, 7fin23lem29 9163 . . . . 5  |-  U. ran  Z 
C_  U. ran  t
98a1i 11 . . . 4  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  U. ran  Z 
C_  U. ran  t )
103, 1fin23lem21 9161 . . . . . . 7  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  |^| ran  U  =/=  (/) )
1110ancoms 469 . . . . . 6  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  |^| ran  U  =/=  (/) )
12 n0 3931 . . . . . 6  |-  ( |^| ran 
U  =/=  (/)  <->  E. a 
a  e.  |^| ran  U )
1311, 12sylib 208 . . . . 5  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  E. a 
a  e.  |^| ran  U )
143fnseqom 7550 . . . . . . . . . . . . . 14  |-  U  Fn  om
15 fndm 5990 . . . . . . . . . . . . . 14  |-  ( U  Fn  om  ->  dom  U  =  om )
1614, 15ax-mp 5 . . . . . . . . . . . . 13  |-  dom  U  =  om
17 peano1 7085 . . . . . . . . . . . . . 14  |-  (/)  e.  om
1817ne0ii 3923 . . . . . . . . . . . . 13  |-  om  =/=  (/)
1916, 18eqnetri 2864 . . . . . . . . . . . 12  |-  dom  U  =/=  (/)
20 dm0rn0 5342 . . . . . . . . . . . . 13  |-  ( dom 
U  =  (/)  <->  ran  U  =  (/) )
2120necon3bii 2846 . . . . . . . . . . . 12  |-  ( dom 
U  =/=  (/)  <->  ran  U  =/=  (/) )
2219, 21mpbi 220 . . . . . . . . . . 11  |-  ran  U  =/=  (/)
23 intssuni 4499 . . . . . . . . . . 11  |-  ( ran 
U  =/=  (/)  ->  |^| ran  U 
C_  U. ran  U )
2422, 23ax-mp 5 . . . . . . . . . 10  |-  |^| ran  U 
C_  U. ran  U
253fin23lem16 9157 . . . . . . . . . 10  |-  U. ran  U  =  U. ran  t
2624, 25sseqtri 3637 . . . . . . . . 9  |-  |^| ran  U 
C_  U. ran  t
2726sseli 3599 . . . . . . . 8  |-  ( a  e.  |^| ran  U  -> 
a  e.  U. ran  t )
2827adantl 482 . . . . . . 7  |-  ( ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  /\  a  e.  |^| ran  U )  ->  a  e.  U. ran  t )
29 f1fun 6103 . . . . . . . . . . . . 13  |-  ( t : om -1-1-> V  ->  Fun  t )
3029adantr 481 . . . . . . . . . . . 12  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  Fun  t )
313, 1, 4, 5, 6, 7fin23lem30 9164 . . . . . . . . . . . 12  |-  ( Fun  t  ->  ( U. ran  Z  i^i  |^| ran  U )  =  (/) )
3230, 31syl 17 . . . . . . . . . . 11  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  ( U. ran  Z  i^i  |^| ran 
U )  =  (/) )
33 disj 4017 . . . . . . . . . . 11  |-  ( ( U. ran  Z  i^i  |^|
ran  U )  =  (/) 
<-> 
A. a  e.  U. ran  Z  -.  a  e. 
|^| ran  U )
3432, 33sylib 208 . . . . . . . . . 10  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  A. a  e.  U. ran  Z  -.  a  e.  |^| ran  U
)
35 rsp 2929 . . . . . . . . . 10  |-  ( A. a  e.  U. ran  Z  -.  a  e.  |^| ran  U  ->  ( a  e. 
U. ran  Z  ->  -.  a  e.  |^| ran  U ) )
3634, 35syl 17 . . . . . . . . 9  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  (
a  e.  U. ran  Z  ->  -.  a  e.  |^|
ran  U ) )
3736con2d 129 . . . . . . . 8  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  (
a  e.  |^| ran  U  ->  -.  a  e.  U.
ran  Z ) )
3837imp 445 . . . . . . 7  |-  ( ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  /\  a  e.  |^| ran  U )  ->  -.  a  e.  U.
ran  Z )
39 nelne1 2890 . . . . . . 7  |-  ( ( a  e.  U. ran  t  /\  -.  a  e. 
U. ran  Z )  ->  U. ran  t  =/=  U. ran  Z )
4028, 38, 39syl2anc 693 . . . . . 6  |-  ( ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  /\  a  e.  |^| ran  U )  ->  U. ran  t  =/=  U. ran  Z )
4140necomd 2849 . . . . 5  |-  ( ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  /\  a  e.  |^| ran  U )  ->  U. ran  Z  =/=  U. ran  t )
4213, 41exlimddv 1863 . . . 4  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  U. ran  Z  =/=  U. ran  t
)
43 df-pss 3590 . . . 4  |-  ( U. ran  Z  C.  U. ran  t  <->  ( U. ran  Z  C_  U.
ran  t  /\  U. ran  Z  =/=  U. ran  t ) )
449, 42, 43sylanbrc 698 . . 3  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  U. ran  Z 
C.  U. ran  t )
452, 44sylan2 491 . 2  |-  ( ( t : om -1-1-> V  /\  ( G  e.  F  /\  U. ran  t  C_  G ) )  ->  U. ran  Z  C.  U. ran  t )
46453impb 1260 1  |-  ( ( t : om -1-1-> V  /\  G  e.  F  /\  U. ran  t  C_  G )  ->  U. ran  Z 
C.  U. ran  t )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574    C. wpss 3575   (/)c0 3915   ifcif 4086   ~Pcpw 4158   U.cuni 4436   |^|cint 4475   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    o. ccom 5118   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   -1-1->wf1 5885   ` cfv 5888   iota_crio 6610  (class class class)co 6650    |-> cmpt2 6652   omcom 7065  seq𝜔cseqom 7542    ^m cmap 7857    ~~ cen 7952   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765
This theorem is referenced by:  fin23lem32  9166
  Copyright terms: Public domain W3C validator