Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1opr Structured version   Visualization version   Unicode version

Theorem f1opr 33519
Description: Condition for an operation to be one-to-one. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
f1opr  |-  ( F : ( A  X.  B ) -1-1-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. r  e.  A  A. s  e.  B  A. t  e.  A  A. u  e.  B  (
( r F s )  =  ( t F u )  -> 
( r  =  t  /\  s  =  u ) ) ) )
Distinct variable groups:    A, r,
s, t, u    B, r, s, t, u    F, r, s, t, u
Allowed substitution hints:    C( u, t, s, r)

Proof of Theorem f1opr
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 6512 . 2  |-  ( F : ( A  X.  B ) -1-1-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. v  e.  ( A  X.  B ) A. w  e.  ( A  X.  B ) ( ( F `  v )  =  ( F `  w )  ->  v  =  w ) ) )
2 fveq2 6191 . . . . . . . . 9  |-  ( v  =  <. r ,  s
>.  ->  ( F `  v )  =  ( F `  <. r ,  s >. )
)
3 df-ov 6653 . . . . . . . . 9  |-  ( r F s )  =  ( F `  <. r ,  s >. )
42, 3syl6eqr 2674 . . . . . . . 8  |-  ( v  =  <. r ,  s
>.  ->  ( F `  v )  =  ( r F s ) )
54eqeq1d 2624 . . . . . . 7  |-  ( v  =  <. r ,  s
>.  ->  ( ( F `
 v )  =  ( F `  w
)  <->  ( r F s )  =  ( F `  w ) ) )
6 eqeq1 2626 . . . . . . 7  |-  ( v  =  <. r ,  s
>.  ->  ( v  =  w  <->  <. r ,  s
>.  =  w )
)
75, 6imbi12d 334 . . . . . 6  |-  ( v  =  <. r ,  s
>.  ->  ( ( ( F `  v )  =  ( F `  w )  ->  v  =  w )  <->  ( (
r F s )  =  ( F `  w )  ->  <. r ,  s >.  =  w ) ) )
87ralbidv 2986 . . . . 5  |-  ( v  =  <. r ,  s
>.  ->  ( A. w  e.  ( A  X.  B
) ( ( F `
 v )  =  ( F `  w
)  ->  v  =  w )  <->  A. w  e.  ( A  X.  B
) ( ( r F s )  =  ( F `  w
)  ->  <. r ,  s >.  =  w
) ) )
98ralxp 5263 . . . 4  |-  ( A. v  e.  ( A  X.  B ) A. w  e.  ( A  X.  B
) ( ( F `
 v )  =  ( F `  w
)  ->  v  =  w )  <->  A. r  e.  A  A. s  e.  B  A. w  e.  ( A  X.  B
) ( ( r F s )  =  ( F `  w
)  ->  <. r ,  s >.  =  w
) )
10 fveq2 6191 . . . . . . . . 9  |-  ( w  =  <. t ,  u >.  ->  ( F `  w )  =  ( F `  <. t ,  u >. ) )
11 df-ov 6653 . . . . . . . . 9  |-  ( t F u )  =  ( F `  <. t ,  u >. )
1210, 11syl6eqr 2674 . . . . . . . 8  |-  ( w  =  <. t ,  u >.  ->  ( F `  w )  =  ( t F u ) )
1312eqeq2d 2632 . . . . . . 7  |-  ( w  =  <. t ,  u >.  ->  ( ( r F s )  =  ( F `  w
)  <->  ( r F s )  =  ( t F u ) ) )
14 eqeq2 2633 . . . . . . . 8  |-  ( w  =  <. t ,  u >.  ->  ( <. r ,  s >.  =  w  <->  <. r ,  s >.  =  <. t ,  u >. ) )
15 vex 3203 . . . . . . . . 9  |-  r  e. 
_V
16 vex 3203 . . . . . . . . 9  |-  s  e. 
_V
1715, 16opth 4945 . . . . . . . 8  |-  ( <.
r ,  s >.  =  <. t ,  u >.  <-> 
( r  =  t  /\  s  =  u ) )
1814, 17syl6bb 276 . . . . . . 7  |-  ( w  =  <. t ,  u >.  ->  ( <. r ,  s >.  =  w  <-> 
( r  =  t  /\  s  =  u ) ) )
1913, 18imbi12d 334 . . . . . 6  |-  ( w  =  <. t ,  u >.  ->  ( ( ( r F s )  =  ( F `  w )  ->  <. r ,  s >.  =  w )  <->  ( ( r F s )  =  ( t F u )  ->  ( r  =  t  /\  s  =  u ) ) ) )
2019ralxp 5263 . . . . 5  |-  ( A. w  e.  ( A  X.  B ) ( ( r F s )  =  ( F `  w )  ->  <. r ,  s >.  =  w )  <->  A. t  e.  A  A. u  e.  B  ( ( r F s )  =  ( t F u )  ->  ( r  =  t  /\  s  =  u ) ) )
21202ralbii 2981 . . . 4  |-  ( A. r  e.  A  A. s  e.  B  A. w  e.  ( A  X.  B ) ( ( r F s )  =  ( F `  w )  ->  <. r ,  s >.  =  w )  <->  A. r  e.  A  A. s  e.  B  A. t  e.  A  A. u  e.  B  ( ( r F s )  =  ( t F u )  ->  ( r  =  t  /\  s  =  u ) ) )
229, 21bitri 264 . . 3  |-  ( A. v  e.  ( A  X.  B ) A. w  e.  ( A  X.  B
) ( ( F `
 v )  =  ( F `  w
)  ->  v  =  w )  <->  A. r  e.  A  A. s  e.  B  A. t  e.  A  A. u  e.  B  ( (
r F s )  =  ( t F u )  ->  (
r  =  t  /\  s  =  u )
) )
2322anbi2i 730 . 2  |-  ( ( F : ( A  X.  B ) --> C  /\  A. v  e.  ( A  X.  B
) A. w  e.  ( A  X.  B
) ( ( F `
 v )  =  ( F `  w
)  ->  v  =  w ) )  <->  ( F : ( A  X.  B ) --> C  /\  A. r  e.  A  A. s  e.  B  A. t  e.  A  A. u  e.  B  (
( r F s )  =  ( t F u )  -> 
( r  =  t  /\  s  =  u ) ) ) )
241, 23bitri 264 1  |-  ( F : ( A  X.  B ) -1-1-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. r  e.  A  A. s  e.  B  A. t  e.  A  A. u  e.  B  (
( r F s )  =  ( t F u )  -> 
( r  =  t  /\  s  =  u ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   A.wral 2912   <.cop 4183    X. cxp 5112   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896  df-ov 6653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator