Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoinver Structured version   Visualization version   Unicode version

Theorem fcoinver 29418
Description: Build an equivalence relation from a function. Two values are equivalent if they have the same image by the function. See also fcoinvbr 29419. (Contributed by Thierry Arnoux, 3-Jan-2020.)
Assertion
Ref Expression
fcoinver  |-  ( F  Fn  X  ->  ( `' F  o.  F
)  Er  X )

Proof of Theorem fcoinver
StepHypRef Expression
1 relco 5633 . . 3  |-  Rel  ( `' F  o.  F
)
21a1i 11 . 2  |-  ( F  Fn  X  ->  Rel  ( `' F  o.  F
) )
3 dmco 5643 . . 3  |-  dom  ( `' F  o.  F
)  =  ( `' F " dom  `' F )
4 df-rn 5125 . . . . 5  |-  ran  F  =  dom  `' F
54imaeq2i 5464 . . . 4  |-  ( `' F " ran  F
)  =  ( `' F " dom  `' F )
6 cnvimarndm 5486 . . . . 5  |-  ( `' F " ran  F
)  =  dom  F
7 fndm 5990 . . . . 5  |-  ( F  Fn  X  ->  dom  F  =  X )
86, 7syl5eq 2668 . . . 4  |-  ( F  Fn  X  ->  ( `' F " ran  F
)  =  X )
95, 8syl5eqr 2670 . . 3  |-  ( F  Fn  X  ->  ( `' F " dom  `' F )  =  X )
103, 9syl5eq 2668 . 2  |-  ( F  Fn  X  ->  dom  ( `' F  o.  F
)  =  X )
11 cnvco 5308 . . . . 5  |-  `' ( `' F  o.  F
)  =  ( `' F  o.  `' `' F )
12 cnvcnvss 5589 . . . . . 6  |-  `' `' F  C_  F
13 coss2 5278 . . . . . 6  |-  ( `' `' F  C_  F  -> 
( `' F  o.  `' `' F )  C_  ( `' F  o.  F
) )
1412, 13ax-mp 5 . . . . 5  |-  ( `' F  o.  `' `' F )  C_  ( `' F  o.  F
)
1511, 14eqsstri 3635 . . . 4  |-  `' ( `' F  o.  F
)  C_  ( `' F  o.  F )
1615a1i 11 . . 3  |-  ( F  Fn  X  ->  `' ( `' F  o.  F
)  C_  ( `' F  o.  F )
)
17 coass 5654 . . . . 5  |-  ( ( `' F  o.  F
)  o.  ( `' F  o.  F ) )  =  ( `' F  o.  ( F  o.  ( `' F  o.  F ) ) )
18 coass 5654 . . . . . . 7  |-  ( ( F  o.  `' F
)  o.  F )  =  ( F  o.  ( `' F  o.  F
) )
19 fnfun 5988 . . . . . . . . . 10  |-  ( F  Fn  X  ->  Fun  F )
20 funcocnv2 6161 . . . . . . . . . 10  |-  ( Fun 
F  ->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) )
2119, 20syl 17 . . . . . . . . 9  |-  ( F  Fn  X  ->  ( F  o.  `' F
)  =  (  _I  |`  ran  F ) )
2221coeq1d 5283 . . . . . . . 8  |-  ( F  Fn  X  ->  (
( F  o.  `' F )  o.  F
)  =  ( (  _I  |`  ran  F )  o.  F ) )
23 dffn3 6054 . . . . . . . . 9  |-  ( F  Fn  X  <->  F : X
--> ran  F )
24 fcoi2 6079 . . . . . . . . 9  |-  ( F : X --> ran  F  ->  ( (  _I  |`  ran  F
)  o.  F )  =  F )
2523, 24sylbi 207 . . . . . . . 8  |-  ( F  Fn  X  ->  (
(  _I  |`  ran  F
)  o.  F )  =  F )
2622, 25eqtrd 2656 . . . . . . 7  |-  ( F  Fn  X  ->  (
( F  o.  `' F )  o.  F
)  =  F )
2718, 26syl5eqr 2670 . . . . . 6  |-  ( F  Fn  X  ->  ( F  o.  ( `' F  o.  F )
)  =  F )
2827coeq2d 5284 . . . . 5  |-  ( F  Fn  X  ->  ( `' F  o.  ( F  o.  ( `' F  o.  F )
) )  =  ( `' F  o.  F
) )
2917, 28syl5eq 2668 . . . 4  |-  ( F  Fn  X  ->  (
( `' F  o.  F )  o.  ( `' F  o.  F
) )  =  ( `' F  o.  F
) )
30 ssid 3624 . . . 4  |-  ( `' F  o.  F ) 
C_  ( `' F  o.  F )
3129, 30syl6eqss 3655 . . 3  |-  ( F  Fn  X  ->  (
( `' F  o.  F )  o.  ( `' F  o.  F
) )  C_  ( `' F  o.  F
) )
3216, 31unssd 3789 . 2  |-  ( F  Fn  X  ->  ( `' ( `' F  o.  F )  u.  (
( `' F  o.  F )  o.  ( `' F  o.  F
) ) )  C_  ( `' F  o.  F
) )
33 df-er 7742 . 2  |-  ( ( `' F  o.  F
)  Er  X  <->  ( Rel  ( `' F  o.  F
)  /\  dom  ( `' F  o.  F )  =  X  /\  ( `' ( `' F  o.  F )  u.  (
( `' F  o.  F )  o.  ( `' F  o.  F
) ) )  C_  ( `' F  o.  F
) ) )
342, 10, 32, 33syl3anbrc 1246 1  |-  ( F  Fn  X  ->  ( `' F  o.  F
)  Er  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    u. cun 3572    C_ wss 3574    _I cid 5023   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Rel wrel 5119   Fun wfun 5882    Fn wfn 5883   -->wf 5884    Er wer 7739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-er 7742
This theorem is referenced by:  qtophaus  29903
  Copyright terms: Public domain W3C validator