Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdivmptfv Structured version   Visualization version   Unicode version

Theorem fdivmptfv 42339
Description: The function value of a quotient of two functions into the complex numbers. (Contributed by AV, 19-May-2020.)
Assertion
Ref Expression
fdivmptfv  |-  ( ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V
)  /\  X  e.  ( G supp  0 )
)  ->  ( ( F /_f  G ) `  X
)  =  ( ( F `  X )  /  ( G `  X ) ) )

Proof of Theorem fdivmptfv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fdivmpt 42334 . . 3  |-  ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V )  ->  ( F /_f  G )  =  ( x  e.  ( G supp  0 ) 
|->  ( ( F `  x )  /  ( G `  x )
) ) )
21adantr 481 . 2  |-  ( ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V
)  /\  X  e.  ( G supp  0 )
)  ->  ( F /_f  G )  =  ( x  e.  ( G supp  0
)  |->  ( ( F `
 x )  / 
( G `  x
) ) ) )
3 fveq2 6191 . . . 4  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
4 fveq2 6191 . . . 4  |-  ( x  =  X  ->  ( G `  x )  =  ( G `  X ) )
53, 4oveq12d 6668 . . 3  |-  ( x  =  X  ->  (
( F `  x
)  /  ( G `
 x ) )  =  ( ( F `
 X )  / 
( G `  X
) ) )
65adantl 482 . 2  |-  ( ( ( ( F : A
--> CC  /\  G : A
--> CC  /\  A  e.  V )  /\  X  e.  ( G supp  0 ) )  /\  x  =  X )  ->  (
( F `  x
)  /  ( G `
 x ) )  =  ( ( F `
 X )  / 
( G `  X
) ) )
7 simpr 477 . 2  |-  ( ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V
)  /\  X  e.  ( G supp  0 )
)  ->  X  e.  ( G supp  0 )
)
8 ovexd 6680 . 2  |-  ( ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V
)  /\  X  e.  ( G supp  0 )
)  ->  ( ( F `  X )  /  ( G `  X ) )  e. 
_V )
92, 6, 7, 8fvmptd 6288 1  |-  ( ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V
)  /\  X  e.  ( G supp  0 )
)  ->  ( ( F /_f  G ) `  X
)  =  ( ( F `  X )  /  ( G `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295   CCcc 9934   0cc0 9936    / cdiv 10684   /_f cfdiv 42331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-supp 7296  df-fdiv 42332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator