Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdmdifeqresdif Structured version   Visualization version   Unicode version

Theorem fdmdifeqresdif 42120
Description: The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019.)
Hypothesis
Ref Expression
fdmdifeqresdif.f  |-  F  =  ( x  e.  D  |->  if ( x  =  Y ,  X , 
( G `  x
) ) )
Assertion
Ref Expression
fdmdifeqresdif  |-  ( G : ( D  \  { Y } ) --> R  ->  G  =  ( F  |`  ( D  \  { Y } ) ) )
Distinct variable groups:    x, D    x, G    x, R    x, Y
Allowed substitution hints:    F( x)    X( x)

Proof of Theorem fdmdifeqresdif
StepHypRef Expression
1 eldifsn 4317 . . . . . 6  |-  ( x  e.  ( D  \  { Y } )  <->  ( x  e.  D  /\  x  =/=  Y ) )
2 neneq 2800 . . . . . 6  |-  ( x  =/=  Y  ->  -.  x  =  Y )
31, 2simplbiim 659 . . . . 5  |-  ( x  e.  ( D  \  { Y } )  ->  -.  x  =  Y
)
43adantl 482 . . . 4  |-  ( ( G : ( D 
\  { Y }
) --> R  /\  x  e.  ( D  \  { Y } ) )  ->  -.  x  =  Y
)
54iffalsed 4097 . . 3  |-  ( ( G : ( D 
\  { Y }
) --> R  /\  x  e.  ( D  \  { Y } ) )  ->  if ( x  =  Y ,  X ,  ( G `  x ) )  =  ( G `
 x ) )
65mpteq2dva 4744 . 2  |-  ( G : ( D  \  { Y } ) --> R  ->  ( x  e.  ( D  \  { Y } )  |->  if ( x  =  Y ,  X ,  ( G `  x ) ) )  =  ( x  e.  ( D  \  { Y } )  |->  ( G `
 x ) ) )
7 fdmdifeqresdif.f . . . 4  |-  F  =  ( x  e.  D  |->  if ( x  =  Y ,  X , 
( G `  x
) ) )
87reseq1i 5392 . . 3  |-  ( F  |`  ( D  \  { Y } ) )  =  ( ( x  e.  D  |->  if ( x  =  Y ,  X ,  ( G `  x ) ) )  |`  ( D  \  { Y } ) )
9 difssd 3738 . . . 4  |-  ( G : ( D  \  { Y } ) --> R  ->  ( D  \  { Y } )  C_  D )
109resmptd 5452 . . 3  |-  ( G : ( D  \  { Y } ) --> R  ->  ( ( x  e.  D  |->  if ( x  =  Y ,  X ,  ( G `  x ) ) )  |`  ( D  \  { Y } ) )  =  ( x  e.  ( D  \  { Y } )  |->  if ( x  =  Y ,  X ,  ( G `  x ) ) ) )
118, 10syl5eq 2668 . 2  |-  ( G : ( D  \  { Y } ) --> R  ->  ( F  |`  ( D  \  { Y } ) )  =  ( x  e.  ( D  \  { Y } )  |->  if ( x  =  Y ,  X ,  ( G `  x ) ) ) )
12 ffn 6045 . . 3  |-  ( G : ( D  \  { Y } ) --> R  ->  G  Fn  ( D  \  { Y }
) )
13 dffn5 6241 . . 3  |-  ( G  Fn  ( D  \  { Y } )  <->  G  =  ( x  e.  ( D  \  { Y }
)  |->  ( G `  x ) ) )
1412, 13sylib 208 . 2  |-  ( G : ( D  \  { Y } ) --> R  ->  G  =  ( x  e.  ( D 
\  { Y }
)  |->  ( G `  x ) ) )
156, 11, 143eqtr4rd 2667 1  |-  ( G : ( D  \  { Y } ) --> R  ->  G  =  ( F  |`  ( D  \  { Y } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   ifcif 4086   {csn 4177    |-> cmpt 4729    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  lincext2  42244  lincext3  42245
  Copyright terms: Public domain W3C validator