| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fdmdifeqresdif | Structured version Visualization version Unicode version | ||
| Description: The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019.) |
| Ref | Expression |
|---|---|
| fdmdifeqresdif.f |
|
| Ref | Expression |
|---|---|
| fdmdifeqresdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4317 |
. . . . . 6
| |
| 2 | neneq 2800 |
. . . . . 6
| |
| 3 | 1, 2 | simplbiim 659 |
. . . . 5
|
| 4 | 3 | adantl 482 |
. . . 4
|
| 5 | 4 | iffalsed 4097 |
. . 3
|
| 6 | 5 | mpteq2dva 4744 |
. 2
|
| 7 | fdmdifeqresdif.f |
. . . 4
| |
| 8 | 7 | reseq1i 5392 |
. . 3
|
| 9 | difssd 3738 |
. . . 4
| |
| 10 | 9 | resmptd 5452 |
. . 3
|
| 11 | 8, 10 | syl5eq 2668 |
. 2
|
| 12 | ffn 6045 |
. . 3
| |
| 13 | dffn5 6241 |
. . 3
| |
| 14 | 12, 13 | sylib 208 |
. 2
|
| 15 | 6, 11, 14 | 3eqtr4rd 2667 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 |
| This theorem is referenced by: lincext2 42244 lincext3 42245 |
| Copyright terms: Public domain | W3C validator |