Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincext2 Structured version   Visualization version   Unicode version

Theorem lincext2 42244
Description: Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincext.b  |-  B  =  ( Base `  M
)
lincext.r  |-  R  =  (Scalar `  M )
lincext.e  |-  E  =  ( Base `  R
)
lincext.0  |-  .0.  =  ( 0g `  R )
lincext.z  |-  Z  =  ( 0g `  M
)
lincext.n  |-  N  =  ( invg `  R )
lincext.f  |-  F  =  ( z  e.  S  |->  if ( z  =  X ,  ( N `
 Y ) ,  ( G `  z
) ) )
Assertion
Ref Expression
lincext2  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P B
)  /\  ( Y  e.  E  /\  X  e.  S  /\  G  e.  ( E  ^m  ( S  \  { X }
) ) )  /\  G finSupp  .0.  )  ->  F finSupp  .0.  )
Distinct variable groups:    z, B    z, E    z, G    z, M    z, S    z, X    z, Y
Allowed substitution hints:    R( z)    F( z)    N( z)    .0. ( z)    Z( z)

Proof of Theorem lincext2
StepHypRef Expression
1 fvex 6201 . . . . . 6  |-  ( N `
 Y )  e. 
_V
2 fvex 6201 . . . . . 6  |-  ( G `
 z )  e. 
_V
31, 2ifex 4156 . . . . 5  |-  if ( z  =  X , 
( N `  Y
) ,  ( G `
 z ) )  e.  _V
4 lincext.f . . . . 5  |-  F  =  ( z  e.  S  |->  if ( z  =  X ,  ( N `
 Y ) ,  ( G `  z
) ) )
53, 4dmmpti 6023 . . . 4  |-  dom  F  =  S
65difeq1i 3724 . . 3  |-  ( dom 
F  \  ( S  \  { X } ) )  =  ( S 
\  ( S  \  { X } ) )
7 snssi 4339 . . . . . . 7  |-  ( X  e.  S  ->  { X }  C_  S )
873ad2ant2 1083 . . . . . 6  |-  ( ( Y  e.  E  /\  X  e.  S  /\  G  e.  ( E  ^m  ( S  \  { X } ) ) )  ->  { X }  C_  S )
983ad2ant2 1083 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P B
)  /\  ( Y  e.  E  /\  X  e.  S  /\  G  e.  ( E  ^m  ( S  \  { X }
) ) )  /\  G finSupp  .0.  )  ->  { X }  C_  S )
10 dfss4 3858 . . . . 5  |-  ( { X }  C_  S  <->  ( S  \  ( S 
\  { X }
) )  =  { X } )
119, 10sylib 208 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P B
)  /\  ( Y  e.  E  /\  X  e.  S  /\  G  e.  ( E  ^m  ( S  \  { X }
) ) )  /\  G finSupp  .0.  )  ->  ( S  \  ( S  \  { X } ) )  =  { X }
)
12 snfi 8038 . . . 4  |-  { X }  e.  Fin
1311, 12syl6eqel 2709 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P B
)  /\  ( Y  e.  E  /\  X  e.  S  /\  G  e.  ( E  ^m  ( S  \  { X }
) ) )  /\  G finSupp  .0.  )  ->  ( S  \  ( S  \  { X } ) )  e.  Fin )
146, 13syl5eqel 2705 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P B
)  /\  ( Y  e.  E  /\  X  e.  S  /\  G  e.  ( E  ^m  ( S  \  { X }
) ) )  /\  G finSupp  .0.  )  ->  ( dom  F  \  ( S 
\  { X }
) )  e.  Fin )
15 lincext.b . . . 4  |-  B  =  ( Base `  M
)
16 lincext.r . . . 4  |-  R  =  (Scalar `  M )
17 lincext.e . . . 4  |-  E  =  ( Base `  R
)
18 lincext.0 . . . 4  |-  .0.  =  ( 0g `  R )
19 lincext.z . . . 4  |-  Z  =  ( 0g `  M
)
20 lincext.n . . . 4  |-  N  =  ( invg `  R )
2115, 16, 17, 18, 19, 20, 4lincext1 42243 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P B
)  /\  ( Y  e.  E  /\  X  e.  S  /\  G  e.  ( E  ^m  ( S  \  { X }
) ) ) )  ->  F  e.  ( E  ^m  S ) )
22213adant3 1081 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P B
)  /\  ( Y  e.  E  /\  X  e.  S  /\  G  e.  ( E  ^m  ( S  \  { X }
) ) )  /\  G finSupp  .0.  )  ->  F  e.  ( E  ^m  S
) )
23 elmapfun 7881 . . 3  |-  ( F  e.  ( E  ^m  S )  ->  Fun  F )
2422, 23syl 17 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P B
)  /\  ( Y  e.  E  /\  X  e.  S  /\  G  e.  ( E  ^m  ( S  \  { X }
) ) )  /\  G finSupp  .0.  )  ->  Fun  F )
25 elmapi 7879 . . . . 5  |-  ( G  e.  ( E  ^m  ( S  \  { X } ) )  ->  G : ( S  \  { X } ) --> E )
264fdmdifeqresdif 42120 . . . . 5  |-  ( G : ( S  \  { X } ) --> E  ->  G  =  ( F  |`  ( S  \  { X } ) ) )
2725, 26syl 17 . . . 4  |-  ( G  e.  ( E  ^m  ( S  \  { X } ) )  ->  G  =  ( F  |`  ( S  \  { X } ) ) )
28273ad2ant3 1084 . . 3  |-  ( ( Y  e.  E  /\  X  e.  S  /\  G  e.  ( E  ^m  ( S  \  { X } ) ) )  ->  G  =  ( F  |`  ( S  \  { X } ) ) )
29283ad2ant2 1083 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P B
)  /\  ( Y  e.  E  /\  X  e.  S  /\  G  e.  ( E  ^m  ( S  \  { X }
) ) )  /\  G finSupp  .0.  )  ->  G  =  ( F  |`  ( S  \  { X } ) ) )
30 simp3 1063 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P B
)  /\  ( Y  e.  E  /\  X  e.  S  /\  G  e.  ( E  ^m  ( S  \  { X }
) ) )  /\  G finSupp  .0.  )  ->  G finSupp  .0.  )
31 fvex 6201 . . . 4  |-  ( 0g
`  R )  e. 
_V
3218, 31eqeltri 2697 . . 3  |-  .0.  e.  _V
3332a1i 11 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P B
)  /\  ( Y  e.  E  /\  X  e.  S  /\  G  e.  ( E  ^m  ( S  \  { X }
) ) )  /\  G finSupp  .0.  )  ->  .0.  e.  _V )
3414, 22, 24, 29, 30, 33resfsupp 8302 1  |-  ( ( ( M  e.  LMod  /\  S  e.  ~P B
)  /\  ( Y  e.  E  /\  X  e.  S  /\  G  e.  ( E  ^m  ( S  \  { X }
) ) )  /\  G finSupp  .0.  )  ->  F finSupp  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   ~Pcpw 4158   {csn 4177   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    |` cres 5116   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   finSupp cfsupp 8275   Basecbs 15857  Scalarcsca 15944   0gc0g 16100   invgcminusg 17423   LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fsupp 8276  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-ring 18549  df-lmod 18865
This theorem is referenced by:  lincext3  42245  lindslinindsimp1  42246  islindeps2  42272
  Copyright terms: Public domain W3C validator