Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpeq2 Structured version   Visualization version   Unicode version

Theorem finxpeq2 33224
Description: Equality theorem for Cartesian exponentiation. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
finxpeq2  |-  ( M  =  N  ->  ( U ^^ ^^ M )  =  ( U ^^ ^^ N ) )

Proof of Theorem finxpeq2
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . 4  |-  ( M  =  N  ->  ( M  e.  om  <->  N  e.  om ) )
2 opeq1 4402 . . . . . . 7  |-  ( M  =  N  ->  <. M , 
y >.  =  <. N , 
y >. )
3 rdgeq2 7508 . . . . . . 7  |-  ( <. M ,  y >.  = 
<. N ,  y >.  ->  rec ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. M ,  y
>. )  =  rec ( ( n  e. 
om ,  x  e. 
_V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) )
42, 3syl 17 . . . . . 6  |-  ( M  =  N  ->  rec ( ( n  e. 
om ,  x  e. 
_V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. M ,  y
>. )  =  rec ( ( n  e. 
om ,  x  e. 
_V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) )
5 id 22 . . . . . 6  |-  ( M  =  N  ->  M  =  N )
64, 5fveq12d 6197 . . . . 5  |-  ( M  =  N  ->  ( rec ( ( n  e. 
om ,  x  e. 
_V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. M ,  y
>. ) `  M )  =  ( rec (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) )
76eqeq2d 2632 . . . 4  |-  ( M  =  N  ->  ( (/)  =  ( rec (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) ,  <. M ,  y
>. ) `  M )  <->  (/)  =  ( rec (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) )
81, 7anbi12d 747 . . 3  |-  ( M  =  N  ->  (
( M  e.  om  /\  (/)  =  ( rec (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) ,  <. M ,  y
>. ) `  M ) )  <->  ( N  e. 
om  /\  (/)  =  ( rec ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) ) )
98abbidv 2741 . 2  |-  ( M  =  N  ->  { y  |  ( M  e. 
om  /\  (/)  =  ( rec ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. M ,  y
>. ) `  M ) ) }  =  {
y  |  ( N  e.  om  /\  (/)  =  ( rec ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) } )
10 df-finxp 33221 . 2  |-  ( U ^^ ^^ M )  =  { y  |  ( M  e.  om  /\  (/)  =  ( rec (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) ,  <. M ,  y
>. ) `  M ) ) }
11 df-finxp 33221 . 2  |-  ( U ^^ ^^ N )  =  { y  |  ( N  e.  om  /\  (/)  =  ( rec (
( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) }
129, 10, 113eqtr4g 2681 1  |-  ( M  =  N  ->  ( U ^^ ^^ M )  =  ( U ^^ ^^ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200   (/)c0 3915   ifcif 4086   <.cop 4183   U.cuni 4436    X. cxp 5112   ` cfv 5888    |-> cmpt2 6652   omcom 7065   1stc1st 7166   reccrdg 7505   1oc1o 7553   ^^
^^cfinxp 33220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fv 5896  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-finxp 33221
This theorem is referenced by:  finxp2o  33236  finxp3o  33237  finxp00  33239
  Copyright terms: Public domain W3C validator