MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimss1 Structured version   Visualization version   Unicode version

Theorem flimss1 21777
Description: A limit point of a filter is a limit point in a coarser topology. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
flimss1  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  ->  ( K  fLim  F )  C_  ( J  fLim  F ) )

Proof of Theorem flimss1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . 7  |-  U. K  =  U. K
21flimelbas 21772 . . . . . 6  |-  ( x  e.  ( K  fLim  F )  ->  x  e.  U. K )
32adantl 482 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  x  e.  U. K )
4 simpl2 1065 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  F  e.  ( Fil `  X ) )
5 filunibas 21685 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  U. F  =  X )
64, 5syl 17 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  U. F  =  X )
71flimfil 21773 . . . . . . . 8  |-  ( x  e.  ( K  fLim  F )  ->  F  e.  ( Fil `  U. K
) )
87adantl 482 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  F  e.  ( Fil `  U. K
) )
9 filunibas 21685 . . . . . . 7  |-  ( F  e.  ( Fil `  U. K )  ->  U. F  =  U. K )
108, 9syl 17 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  U. F  = 
U. K )
116, 10eqtr3d 2658 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  X  =  U. K )
123, 11eleqtrrd 2704 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  x  e.  X )
13 simpl1 1064 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  J  e.  (TopOn `  X ) )
14 topontop 20718 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
1513, 14syl 17 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  J  e.  Top )
16 flimtop 21769 . . . . . . 7  |-  ( x  e.  ( K  fLim  F )  ->  K  e.  Top )
1716adantl 482 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  K  e.  Top )
18 toponuni 20719 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1913, 18syl 17 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  X  =  U. J )
2019, 11eqtr3d 2658 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  U. J  = 
U. K )
21 simpl3 1066 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  J  C_  K
)
22 eqid 2622 . . . . . . 7  |-  U. J  =  U. J
2322, 1topssnei 20928 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  U. J  =  U. K
)  /\  J  C_  K
)  ->  ( ( nei `  J ) `  { x } ) 
C_  ( ( nei `  K ) `  {
x } ) )
2415, 17, 20, 21, 23syl31anc 1329 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  ( ( nei `  J ) `  { x } ) 
C_  ( ( nei `  K ) `  {
x } ) )
25 flimneiss 21770 . . . . . 6  |-  ( x  e.  ( K  fLim  F )  ->  ( ( nei `  K ) `  { x } ) 
C_  F )
2625adantl 482 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  ( ( nei `  K ) `  { x } ) 
C_  F )
2724, 26sstrd 3613 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  ( ( nei `  J ) `  { x } ) 
C_  F )
28 elflim 21775 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  ( J 
fLim  F )  <->  ( x  e.  X  /\  (
( nei `  J
) `  { x } )  C_  F
) ) )
2913, 4, 28syl2anc 693 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  ( x  e.  ( J  fLim  F
)  <->  ( x  e.  X  /\  ( ( nei `  J ) `
 { x }
)  C_  F )
) )
3012, 27, 29mpbir2and 957 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  /\  x  e.  ( K  fLim  F ) )  ->  x  e.  ( J  fLim  F ) )
3130ex 450 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  ->  ( x  e.  ( K  fLim  F
)  ->  x  e.  ( J  fLim  F ) ) )
3231ssrdv 3609 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  J  C_  K
)  ->  ( K  fLim  F )  C_  ( J  fLim  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   U.cuni 4436   ` cfv 5888  (class class class)co 6650   Topctop 20698  TopOnctopon 20715   neicnei 20901   Filcfil 21649    fLim cflim 21738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-top 20699  df-topon 20716  df-ntr 20824  df-nei 20902  df-fil 21650  df-flim 21743
This theorem is referenced by:  flimcf  21786
  Copyright terms: Public domain W3C validator