MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimcf Structured version   Visualization version   Unicode version

Theorem flimcf 21786
Description: Fineness is properly characterized by the property that every limit point of a filter in the finer topology is a limit point in the coarser topology. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
flimcf  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  ->  ( J  C_  K  <->  A. f  e.  ( Fil `  X ) ( K  fLim  f
)  C_  ( J  fLim  f ) ) )
Distinct variable groups:    f, J    f, K    f, X

Proof of Theorem flimcf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 798 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  J  e.  (TopOn `  X )
)
2 simprl 794 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  f  e.  ( Fil `  X
) )
3 simplr 792 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  J  C_  K )
4 flimss1 21777 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  f  e.  ( Fil `  X
)  /\  J  C_  K
)  ->  ( K  fLim  f )  C_  ( J  fLim  f ) )
51, 2, 3, 4syl3anc 1326 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  ( K  fLim  f )  C_  ( J  fLim  f ) )
6 simprr 796 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  x  e.  ( K  fLim  f
) )
75, 6sseldd 3604 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  x  e.  ( J  fLim  f
) )
87expr 643 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  f  e.  ( Fil `  X ) )  -> 
( x  e.  ( K  fLim  f )  ->  x  e.  ( J 
fLim  f ) ) )
98ssrdv 3609 . . 3  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  f  e.  ( Fil `  X ) )  -> 
( K  fLim  f
)  C_  ( J  fLim  f ) )
109ralrimiva 2966 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  J  C_  K
)  ->  A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f ) )
11 simpllr 799 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  K  e.  (TopOn `  X
) )
12 simplll 798 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  J  e.  (TopOn `  X
) )
13 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  x  e.  J )
14 toponss 20731 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  J )  ->  x  C_  X )
1512, 13, 14syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  x  C_  X )
16 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
y  e.  x )
1715, 16sseldd 3604 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
y  e.  X )
1817snssd 4340 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  { y }  C_  X )
19 snnzg 4308 . . . . . . . . . . . . 13  |-  ( y  e.  X  ->  { y }  =/=  (/) )
2017, 19syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  { y }  =/=  (/) )
21 neifil 21684 . . . . . . . . . . . 12  |-  ( ( K  e.  (TopOn `  X )  /\  {
y }  C_  X  /\  { y }  =/=  (/) )  ->  ( ( nei `  K ) `  { y } )  e.  ( Fil `  X
) )
2211, 18, 20, 21syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
( ( nei `  K
) `  { y } )  e.  ( Fil `  X ) )
23 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  A. f  e.  ( Fil `  X ) ( K  fLim  f )  C_  ( J  fLim  f
) )
24 oveq2 6658 . . . . . . . . . . . . 13  |-  ( f  =  ( ( nei `  K ) `  {
y } )  -> 
( K  fLim  f
)  =  ( K 
fLim  ( ( nei `  K ) `  {
y } ) ) )
25 oveq2 6658 . . . . . . . . . . . . 13  |-  ( f  =  ( ( nei `  K ) `  {
y } )  -> 
( J  fLim  f
)  =  ( J 
fLim  ( ( nei `  K ) `  {
y } ) ) )
2624, 25sseq12d 3634 . . . . . . . . . . . 12  |-  ( f  =  ( ( nei `  K ) `  {
y } )  -> 
( ( K  fLim  f )  C_  ( J  fLim  f )  <->  ( K  fLim  ( ( nei `  K
) `  { y } ) )  C_  ( J  fLim  ( ( nei `  K ) `
 { y } ) ) ) )
2726rspcv 3305 . . . . . . . . . . 11  |-  ( ( ( nei `  K
) `  { y } )  e.  ( Fil `  X )  ->  ( A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f )  ->  ( K  fLim  ( ( nei `  K ) `  {
y } ) ) 
C_  ( J  fLim  ( ( nei `  K
) `  { y } ) ) ) )
2822, 23, 27sylc 65 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
( K  fLim  (
( nei `  K
) `  { y } ) )  C_  ( J  fLim  ( ( nei `  K ) `
 { y } ) ) )
29 neiflim 21778 . . . . . . . . . . 11  |-  ( ( K  e.  (TopOn `  X )  /\  y  e.  X )  ->  y  e.  ( K  fLim  (
( nei `  K
) `  { y } ) ) )
3011, 17, 29syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
y  e.  ( K 
fLim  ( ( nei `  K ) `  {
y } ) ) )
3128, 30sseldd 3604 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
y  e.  ( J 
fLim  ( ( nei `  K ) `  {
y } ) ) )
32 flimneiss 21770 . . . . . . . . 9  |-  ( y  e.  ( J  fLim  ( ( nei `  K
) `  { y } ) )  -> 
( ( nei `  J
) `  { y } )  C_  (
( nei `  K
) `  { y } ) )
3331, 32syl 17 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
( ( nei `  J
) `  { y } )  C_  (
( nei `  K
) `  { y } ) )
34 topontop 20718 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
3512, 34syl 17 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  J  e.  Top )
36 opnneip 20923 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  x  e.  J  /\  y  e.  x )  ->  x  e.  ( ( nei `  J ) `
 { y } ) )
3735, 13, 16, 36syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  x  e.  ( ( nei `  J ) `  { y } ) )
3833, 37sseldd 3604 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  x  e.  ( ( nei `  K ) `  { y } ) )
3938anassrs 680 . . . . . 6  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  /\  y  e.  x
)  ->  x  e.  ( ( nei `  K
) `  { y } ) )
4039ralrimiva 2966 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  ->  A. y  e.  x  x  e.  ( ( nei `  K
) `  { y } ) )
41 simpllr 799 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  ->  K  e.  (TopOn `  X )
)
42 topontop 20718 . . . . . 6  |-  ( K  e.  (TopOn `  X
)  ->  K  e.  Top )
43 opnnei 20924 . . . . . 6  |-  ( K  e.  Top  ->  (
x  e.  K  <->  A. y  e.  x  x  e.  ( ( nei `  K
) `  { y } ) ) )
4441, 42, 433syl 18 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  ->  (
x  e.  K  <->  A. y  e.  x  x  e.  ( ( nei `  K
) `  { y } ) ) )
4540, 44mpbird 247 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  ->  x  e.  K )
4645ex 450 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f ) )  -> 
( x  e.  J  ->  x  e.  K ) )
4746ssrdv 3609 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f ) )  ->  J  C_  K )
4810, 47impbida 877 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  ->  ( J  C_  K  <->  A. f  e.  ( Fil `  X ) ( K  fLim  f
)  C_  ( J  fLim  f ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   {csn 4177   ` cfv 5888  (class class class)co 6650   Topctop 20698  TopOnctopon 20715   neicnei 20901   Filcfil 21649    fLim cflim 21738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-top 20699  df-topon 20716  df-ntr 20824  df-nei 20902  df-fil 21650  df-flim 21743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator