MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufldom Structured version   Visualization version   Unicode version

Theorem ufldom 21766
Description: The ultrafilter lemma property is a cardinal invariant, so since it transfers to subsets it also transfers over set dominance. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufldom  |-  ( ( X  e. UFL  /\  Y  ~<_  X )  ->  Y  e. UFL )

Proof of Theorem ufldom
Dummy variables  u  x  f  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domeng 7969 . . 3  |-  ( X  e. UFL  ->  ( Y  ~<_  X  <->  E. x ( Y  ~~  x  /\  x  C_  X
) ) )
2 bren 7964 . . . . . . . 8  |-  ( Y 
~~  x  <->  E. f 
f : Y -1-1-onto-> x )
32biimpi 206 . . . . . . 7  |-  ( Y 
~~  x  ->  E. f 
f : Y -1-1-onto-> x )
4 ssufl 21722 . . . . . . 7  |-  ( ( X  e. UFL  /\  x  C_  X )  ->  x  e. UFL )
5 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  x  e. UFL )
6 filfbas 21652 . . . . . . . . . . . . . . . 16  |-  ( g  e.  ( Fil `  Y
)  ->  g  e.  ( fBas `  Y )
)
76adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  g  e.  (
fBas `  Y )
)
8 f1of 6137 . . . . . . . . . . . . . . . 16  |-  ( f : Y -1-1-onto-> x  ->  f : Y --> x )
98ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  f : Y --> x )
10 fmfil 21748 . . . . . . . . . . . . . . 15  |-  ( ( x  e. UFL  /\  g  e.  ( fBas `  Y
)  /\  f : Y
--> x )  ->  (
( x  FilMap  f ) `
 g )  e.  ( Fil `  x
) )
115, 7, 9, 10syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  ( ( x 
FilMap  f ) `  g
)  e.  ( Fil `  x ) )
12 ufli 21718 . . . . . . . . . . . . . 14  |-  ( ( x  e. UFL  /\  (
( x  FilMap  f ) `
 g )  e.  ( Fil `  x
) )  ->  E. y  e.  ( UFil `  x
) ( ( x 
FilMap  f ) `  g
)  C_  y )
135, 11, 12syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  E. y  e.  (
UFil `  x )
( ( x  FilMap  f ) `  g ) 
C_  y )
14 f1odm 6141 . . . . . . . . . . . . . . . . . 18  |-  ( f : Y -1-1-onto-> x  ->  dom  f  =  Y )
1514adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  dom  f  =  Y )
16 vex 3203 . . . . . . . . . . . . . . . . . 18  |-  f  e. 
_V
1716dmex 7099 . . . . . . . . . . . . . . . . 17  |-  dom  f  e.  _V
1815, 17syl6eqelr 2710 . . . . . . . . . . . . . . . 16  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  Y  e.  _V )
1918ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  Y  e.  _V )
20 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
y  e.  ( UFil `  x ) )
21 f1ocnv 6149 . . . . . . . . . . . . . . . . 17  |-  ( f : Y -1-1-onto-> x  ->  `' f : x -1-1-onto-> Y )
2221ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  `' f : x -1-1-onto-> Y )
23 f1of 6137 . . . . . . . . . . . . . . . 16  |-  ( `' f : x -1-1-onto-> Y  ->  `' f : x --> Y )
2422, 23syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  `' f : x --> Y )
25 fmufil 21763 . . . . . . . . . . . . . . 15  |-  ( ( Y  e.  _V  /\  y  e.  ( UFil `  x )  /\  `' f : x --> Y )  ->  ( ( Y 
FilMap  `' f ) `  y )  e.  (
UFil `  Y )
)
2619, 20, 24, 25syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  `' f ) `  y
)  e.  ( UFil `  Y ) )
27 f1ococnv1 6165 . . . . . . . . . . . . . . . . . . 19  |-  ( f : Y -1-1-onto-> x  ->  ( `' f  o.  f )  =  (  _I  |`  Y ) )
2827ad3antrrr 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( `' f  o.  f )  =  (  _I  |`  Y )
)
2928oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( Y  FilMap  ( `' f  o.  f ) )  =  ( Y 
FilMap  (  _I  |`  Y ) ) )
3029fveq1d 6193 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  ( `' f  o.  f
) ) `  g
)  =  ( ( Y  FilMap  (  _I  |`  Y ) ) `  g ) )
315adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  x  e. UFL )
327adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
g  e.  ( fBas `  Y ) )
338ad3antrrr 766 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
f : Y --> x )
34 fmco 21765 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Y  e.  _V  /\  x  e. UFL  /\  g  e.  ( fBas `  Y
) )  /\  ( `' f : x --> Y  /\  f : Y --> x ) )  ->  ( ( Y 
FilMap  ( `' f  o.  f ) ) `  g )  =  ( ( Y  FilMap  `' f ) `  ( ( x  FilMap  f ) `  g ) ) )
3519, 31, 32, 24, 33, 34syl32anc 1334 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  ( `' f  o.  f
) ) `  g
)  =  ( ( Y  FilMap  `' f ) `
 ( ( x 
FilMap  f ) `  g
) ) )
36 simplr 792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
g  e.  ( Fil `  Y ) )
37 fmid 21764 . . . . . . . . . . . . . . . . 17  |-  ( g  e.  ( Fil `  Y
)  ->  ( ( Y  FilMap  (  _I  |`  Y ) ) `  g )  =  g )
3836, 37syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  (  _I  |`  Y )
) `  g )  =  g )
3930, 35, 383eqtr3d 2664 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  `' f ) `  (
( x  FilMap  f ) `
 g ) )  =  g )
4011adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( x  FilMap  f ) `  g )  e.  ( Fil `  x
) )
41 filfbas 21652 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  FilMap  f ) `
 g )  e.  ( Fil `  x
)  ->  ( (
x  FilMap  f ) `  g )  e.  (
fBas `  x )
)
4240, 41syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( x  FilMap  f ) `  g )  e.  ( fBas `  x
) )
43 ufilfil 21708 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( UFil `  x
)  ->  y  e.  ( Fil `  x ) )
44 filfbas 21652 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( Fil `  x
)  ->  y  e.  ( fBas `  x )
)
4520, 43, 443syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
y  e.  ( fBas `  x ) )
46 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( x  FilMap  f ) `  g ) 
C_  y )
47 fmss 21750 . . . . . . . . . . . . . . . 16  |-  ( ( ( Y  e.  _V  /\  ( ( x  FilMap  f ) `  g )  e.  ( fBas `  x
)  /\  y  e.  ( fBas `  x )
)  /\  ( `' f : x --> Y  /\  ( ( x  FilMap  f ) `  g ) 
C_  y ) )  ->  ( ( Y 
FilMap  `' f ) `  ( ( x  FilMap  f ) `  g ) )  C_  ( ( Y  FilMap  `' f ) `
 y ) )
4819, 42, 45, 24, 46, 47syl32anc 1334 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  `' f ) `  (
( x  FilMap  f ) `
 g ) ) 
C_  ( ( Y 
FilMap  `' f ) `  y ) )
4939, 48eqsstr3d 3640 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
g  C_  ( ( Y  FilMap  `' f ) `
 y ) )
50 sseq2 3627 . . . . . . . . . . . . . . 15  |-  ( u  =  ( ( Y 
FilMap  `' f ) `  y )  ->  (
g  C_  u  <->  g  C_  ( ( Y  FilMap  `' f ) `  y
) ) )
5150rspcev 3309 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  FilMap  `' f ) `  y
)  e.  ( UFil `  Y )  /\  g  C_  ( ( Y  FilMap  `' f ) `  y
) )  ->  E. u  e.  ( UFil `  Y
) g  C_  u
)
5226, 49, 51syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  E. u  e.  ( UFil `  Y ) g 
C_  u )
5313, 52rexlimddv 3035 . . . . . . . . . . . 12  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  E. u  e.  (
UFil `  Y )
g  C_  u )
5453ralrimiva 2966 . . . . . . . . . . 11  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  A. g  e.  ( Fil `  Y ) E. u  e.  ( UFil `  Y
) g  C_  u
)
55 isufl 21717 . . . . . . . . . . . 12  |-  ( Y  e.  _V  ->  ( Y  e. UFL  <->  A. g  e.  ( Fil `  Y ) E. u  e.  (
UFil `  Y )
g  C_  u )
)
5618, 55syl 17 . . . . . . . . . . 11  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  ( Y  e. UFL  <->  A. g  e.  ( Fil `  Y
) E. u  e.  ( UFil `  Y
) g  C_  u
) )
5754, 56mpbird 247 . . . . . . . . . 10  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  Y  e. UFL )
5857ex 450 . . . . . . . . 9  |-  ( f : Y -1-1-onto-> x  ->  ( x  e. UFL  ->  Y  e. UFL )
)
5958exlimiv 1858 . . . . . . . 8  |-  ( E. f  f : Y -1-1-onto-> x  ->  ( x  e. UFL  ->  Y  e. UFL ) )
6059imp 445 . . . . . . 7  |-  ( ( E. f  f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  Y  e. UFL )
613, 4, 60syl2an 494 . . . . . 6  |-  ( ( Y  ~~  x  /\  ( X  e. UFL  /\  x  C_  X ) )  ->  Y  e. UFL )
6261an12s 843 . . . . 5  |-  ( ( X  e. UFL  /\  ( Y  ~~  x  /\  x  C_  X ) )  ->  Y  e. UFL )
6362ex 450 . . . 4  |-  ( X  e. UFL  ->  ( ( Y 
~~  x  /\  x  C_  X )  ->  Y  e. UFL ) )
6463exlimdv 1861 . . 3  |-  ( X  e. UFL  ->  ( E. x
( Y  ~~  x  /\  x  C_  X )  ->  Y  e. UFL )
)
651, 64sylbid 230 . 2  |-  ( X  e. UFL  ->  ( Y  ~<_  X  ->  Y  e. UFL )
)
6665imp 445 1  |-  ( ( X  e. UFL  /\  Y  ~<_  X )  ->  Y  e. UFL )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    _I cid 5023   `'ccnv 5113   dom cdm 5114    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ~~ cen 7952    ~<_ cdom 7953   fBascfbas 19734   Filcfil 21649   UFilcufil 21703  UFLcufl 21704    FilMap cfm 21737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-rest 16083  df-fbas 19743  df-fg 19744  df-fil 21650  df-ufil 21705  df-ufl 21706  df-fm 21742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator