MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnexALT Structured version   Visualization version   Unicode version

Theorem fnexALT 7132
Description: Alternate proof of fnex 6481, derived using the Axiom of Replacement in the form of funimaexg 5975. This version uses ax-pow 4843 and ax-un 6949, whereas fnex 6481 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fnexALT  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )

Proof of Theorem fnexALT
StepHypRef Expression
1 fnrel 5989 . . . 4  |-  ( F  Fn  A  ->  Rel  F )
2 relssdmrn 5656 . . . 4  |-  ( Rel 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
31, 2syl 17 . . 3  |-  ( F  Fn  A  ->  F  C_  ( dom  F  X.  ran  F ) )
43adantr 481 . 2  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  C_  ( dom  F  X.  ran  F ) )
5 fndm 5990 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
65eleq1d 2686 . . . 4  |-  ( F  Fn  A  ->  ( dom  F  e.  B  <->  A  e.  B ) )
76biimpar 502 . . 3  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  dom  F  e.  B
)
8 fnfun 5988 . . . . 5  |-  ( F  Fn  A  ->  Fun  F )
9 funimaexg 5975 . . . . 5  |-  ( ( Fun  F  /\  A  e.  B )  ->  ( F " A )  e. 
_V )
108, 9sylan 488 . . . 4  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ( F " A
)  e.  _V )
11 imadmrn 5476 . . . . . . 7  |-  ( F
" dom  F )  =  ran  F
125imaeq2d 5466 . . . . . . 7  |-  ( F  Fn  A  ->  ( F " dom  F )  =  ( F " A ) )
1311, 12syl5eqr 2670 . . . . . 6  |-  ( F  Fn  A  ->  ran  F  =  ( F " A ) )
1413eleq1d 2686 . . . . 5  |-  ( F  Fn  A  ->  ( ran  F  e.  _V  <->  ( F " A )  e.  _V ) )
1514biimpar 502 . . . 4  |-  ( ( F  Fn  A  /\  ( F " A )  e.  _V )  ->  ran  F  e.  _V )
1610, 15syldan 487 . . 3  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ran  F  e.  _V )
17 xpexg 6960 . . 3  |-  ( ( dom  F  e.  B  /\  ran  F  e.  _V )  ->  ( dom  F  X.  ran  F )  e. 
_V )
187, 16, 17syl2anc 693 . 2  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ( dom  F  X.  ran  F )  e.  _V )
19 ssexg 4804 . 2  |-  ( ( F  C_  ( dom  F  X.  ran  F )  /\  ( dom  F  X.  ran  F )  e. 
_V )  ->  F  e.  _V )
204, 18, 19syl2anc 693 1  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   _Vcvv 3200    C_ wss 3574    X. cxp 5112   dom cdm 5114   ran crn 5115   "cima 5117   Rel wrel 5119   Fun wfun 5882    Fn wfn 5883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator