HomeHome Metamath Proof Explorer
Theorem List (p. 72 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 7101-7200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremiprc 7101 The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set, as in idcn 21061. (Contributed by NM, 1-Jan-2007.)
 |- 
 -.  _I  e.  _V
 
Theoremresiexg 7102 The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 6479). (Contributed by NM, 13-Jan-2007.)
 |-  ( A  e.  V  ->  (  _I  |`  A )  e.  _V )
 
Theoremimaexg 7103 The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.)
 |-  ( A  e.  V  ->  ( A " B )  e.  _V )
 
Theoremimaex 7104 The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.)
 |-  A  e.  _V   =>    |-  ( A " B )  e.  _V
 
Theoremexse2 7105 Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.)
 |-  ( R  e.  V  ->  R Se  A )
 
Theoremxpexr 7106 If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006.)
 |-  ( ( A  X.  B )  e.  C  ->  ( A  e.  _V  \/  B  e.  _V )
 )
 
Theoremxpexr2 7107 If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006.)
 |-  ( ( ( A  X.  B )  e.  C  /\  ( A  X.  B )  =/=  (/) )  ->  ( A  e.  _V  /\  B  e.  _V ) )
 
Theoremxpexcnv 7108 A condition where the converse of xpex 6962 holds as well. Corollary 6.9(2) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.)
 |-  ( ( B  =/=  (/)  /\  ( A  X.  B )  e.  _V )  ->  A  e.  _V )
 
Theoremsoex 7109 If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015.)
 |-  ( ( R  Or  A  /\  R  e.  V )  ->  A  e.  _V )
 
Theoremelxp4 7110 Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp5 7111, elxp6 7200, and elxp7 7201. (Contributed by NM, 17-Feb-2004.)
 |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C )
 ) )
 
Theoremelxp5 7111 Membership in a Cartesian product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 7110 when the double intersection does not create class existence problems (caused by int0 4490). (Contributed by NM, 1-Aug-2004.)
 |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. |^| |^| A ,  U. ran  { A } >.  /\  ( |^| |^| A  e.  B  /\  U. ran  { A }  e.  C ) ) )
 
Theoremcnvexg 7112 The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.)
 |-  ( A  e.  V  ->  `' A  e.  _V )
 
Theoremcnvex 7113 The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.)
 |-  A  e.  _V   =>    |-  `' A  e.  _V
 
Theoremrelcnvexb 7114 A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.)
 |-  ( Rel  R  ->  ( R  e.  _V  <->  `' R  e.  _V ) )
 
Theoremf1oexrnex 7115 If the range of a 1-1 onto function is a set, the function itself is a set. (Contributed by AV, 2-Jun-2019.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  B  e.  V )  ->  F  e.  _V )
 
Theoremf1oexbi 7116* There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018.)
 |-  ( E. f  f : A -1-1-onto-> B  <->  E. g  g : B -1-1-onto-> A )
 
Theoremcoexg 7117 The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  o.  B )  e.  _V )
 
Theoremcoex 7118 The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  o.  B )  e.  _V
 
Theoremfuncnvuni 7119* The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 5958 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.)
 |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f
 ) )  ->  Fun  `' U. A )
 
Theoremfun11uni 7120* The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.)
 |-  ( A. f  e.  A  ( ( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f
 ) )  ->  ( Fun  U. A  /\  Fun  `'
 U. A ) )
 
Theoremfex2 7121 A function with bounded domain and range is a set. This version of fex 6490 is proven without the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
 |-  ( ( F : A
 --> B  /\  A  e.  V  /\  B  e.  W )  ->  F  e.  _V )
 
Theoremfabexg 7122* Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.)
 |-  F  =  { x  |  ( x : A --> B  /\  ph ) }   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
 
Theoremfabex 7123* Existence of a set of functions. (Contributed by NM, 3-Dec-2007.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  F  =  { x  |  ( x : A --> B  /\  ph ) }   =>    |-  F  e.  _V
 
Theoremdmfex 7124 If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( F  e.  C  /\  F : A --> B )  ->  A  e.  _V )
 
Theoremf1oabexg 7125* The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.)
 |-  F  =  { f  |  ( f : A -1-1-onto-> B  /\  ph ) }   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
 
Theoremfun11iun 7126* The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013.) (Revised by Mario Carneiro, 24-Jun-2015.)
 |-  ( x  =  y 
 ->  B  =  C )   &    |-  B  e.  _V   =>    |-  ( A. x  e.  A  ( B : D -1-1-> S  /\  A. y  e.  A  ( B  C_  C  \/  C  C_  B ) )  ->  U_ x  e.  A  B : U_ x  e.  A  D -1-1-> S )
 
Theoremffoss 7127* Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.)
 |-  F  e.  _V   =>    |-  ( F : A
 --> B  <->  E. x ( F : A -onto-> x  /\  x  C_  B ) )
 
Theoremf11o 7128* Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.)
 |-  F  e.  _V   =>    |-  ( F : A -1-1-> B  <->  E. x ( F : A -1-1-onto-> x  /\  x  C_  B ) )
 
TheoremresfunexgALT 7129 Alternate proof of resfunexg 6479, shorter but requiring ax-pow 4843 and ax-un 6949. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A  |`  B )  e.  _V )
 
Theoremcofunexg 7130 Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A  o.  B )  e.  _V )
 
Theoremcofunex2g 7131 Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.)
 |-  ( ( A  e.  V  /\  Fun  `' B )  ->  ( A  o.  B )  e.  _V )
 
TheoremfnexALT 7132 Alternate proof of fnex 6481, derived using the Axiom of Replacement in the form of funimaexg 5975. This version uses ax-pow 4843 and ax-un 6949, whereas fnex 6481 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )
 
Theoremfunrnex 7133 If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 6482. (Contributed by NM, 11-Nov-1995.)
 |-  ( dom  F  e.  B  ->  ( Fun  F  ->  ran  F  e.  _V ) )
 
Theoremzfrep6 7134* A version of the Axiom of Replacement. Normally  ph would have free variables  x and  y. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4781 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep 4771. (Contributed by NM, 10-Oct-2003.)
 |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
 
Theoremfornex 7135 If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
 |-  ( A  e.  C  ->  ( F : A -onto-> B  ->  B  e.  _V ) )
 
Theoremf1dmex 7136 If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep 4771. (Contributed by NM, 4-Sep-2004.)
 |-  ( ( F : A -1-1-> B  /\  B  e.  C )  ->  A  e.  _V )
 
Theoremf1ovv 7137 The range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019.)
 |-  ( F : A -1-1-onto-> B  ->  ( A  e.  _V  <->  B  e.  _V ) )
 
Theoremfvclex 7138* Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.)
 |-  F  e.  _V   =>    |-  { y  | 
 E. x  y  =  ( F `  x ) }  e.  _V
 
Theoremfvresex 7139* Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.)
 |-  A  e.  _V   =>    |-  { y  | 
 E. x  y  =  ( ( F  |`  A ) `
  x ) }  e.  _V
 
Theoremabrexexg 7140* Existence of a class abstraction of existentially restricted sets. The class  B can be thought of as an expression in  x (which is typically a free variable in the class expression substituted for  B) and the class abstraction appearing in the statement as the class of values  B as  x varies through  A. If the "domain"  A is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path mptexg 6484, funex 6482, fnex 6481, resfunexg 6479, and funimaexg 5975. See also abrexex2g 7144. There are partial converses under additional conditions, see for instance abnexg 6964. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  e.  V  ->  { y  |  E. x  e.  A  y  =  B }  e.  _V )
 
Theoremabrexex 7141* Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7140. See also abrexex2 7148. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   =>    |-  { y  | 
 E. x  e.  A  y  =  B }  e.  _V
 
TheoremabrexexOLD 7142* Obsolete proof of abrexex 7141 as of 8-Dec-2021. (Contributed by NM, 16-Oct-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  A  e.  _V   =>    |-  { y  | 
 E. x  e.  A  y  =  B }  e.  _V
 
Theoremiunexg 7143* The existence of an indexed union. 
x is normally a free-variable parameter in  B. (Contributed by NM, 23-Mar-2006.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  W )  ->  U_ x  e.  A  B  e.  _V )
 
Theoremabrexex2g 7144* Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  { y  | 
 ph }  e.  W )  ->  { y  | 
 E. x  e.  A  ph
 }  e.  _V )
 
Theoremopabex3d 7145* Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.)
 |-  ( ph  ->  A  e.  _V )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  { y  |  ps }  e.  _V )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ( x  e.  A  /\  ps ) }  e.  _V )
 
Theoremopabex3 7146* Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  A  e.  _V   &    |-  ( x  e.  A  ->  { y  |  ph }  e.  _V )   =>    |- 
 { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
 
Theoremiunex 7147* The existence of an indexed union. 
x is normally a free-variable parameter in the class expression substituted for  B, which can be read informally as  B ( x ). (Contributed by NM, 13-Oct-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  U_ x  e.  A  B  e.  _V
 
Theoremabrexex2 7148* Existence of an existentially restricted class abstraction.  ph normally has free-variable parameters  x and  y. See also abrexex 7141. (Contributed by NM, 12-Sep-2004.)
 |-  A  e.  _V   &    |-  { y  |  ph }  e.  _V   =>    |-  { y  |  E. x  e.  A  ph
 }  e.  _V
 
Theoremabexssex 7149* Existence of a class abstraction with an existentially quantified expression. Both  x and  y can be free in  ph. (Contributed by NM, 29-Jul-2006.)
 |-  A  e.  _V   &    |-  { y  |  ph }  e.  _V   =>    |-  { y  |  E. x ( x 
 C_  A  /\  ph ) }  e.  _V
 
Theoremabrexex2OLD 7150* Obsolete proof of abrexex2 7148 as of 8-Dec-2021. (Contributed by NM, 12-Sep-2004.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  A  e.  _V   &    |-  { y  |  ph }  e.  _V   =>    |-  { y  |  E. x  e.  A  ph
 }  e.  _V
 
Theoremabexex 7151* A condition where a class builder continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.)
 |-  A  e.  _V   &    |-  ( ph  ->  x  e.  A )   &    |- 
 { y  |  ph }  e.  _V   =>    |- 
 { y  |  E. x ph }  e.  _V
 
Theoremf1oweALT 7152* Alternate proof of f1owe 6603, more direct since not using the isomorphism predicate, but requiring ax-un 6949. (Contributed by NM, 4-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  R  =  { <. x ,  y >.  |  ( F `  x ) S ( F `  y ) }   =>    |-  ( F : A
 -1-1-onto-> B  ->  ( S  We  B  ->  R  We  A ) )
 
Theoremwemoiso 7153* Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu 8936. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
 |-  ( R  We  A  ->  E* f  f  Isom  R ,  S  ( A ,  B ) )
 
Theoremwemoiso2 7154* Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
 |-  ( S  We  B  ->  E* f  f  Isom  R ,  S  ( A ,  B ) )
 
Theoremoprabexd 7155* Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  (
 ( ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  E* z ps )   &    |-  ( ph  ->  F  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  A  /\  y  e.  B )  /\  ps ) }
 )   =>    |-  ( ph  ->  F  e.  _V )
 
Theoremoprabex 7156* Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ph )   &    |-  F  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  A  /\  y  e.  B )  /\  ph ) }   =>    |-  F  e.  _V
 
Theoremoprabex3 7157* Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.)
 |-  H  e.  _V   &    |-  F  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  ( H  X.  H )  /\  y  e.  ( H  X.  H ) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. ) 
 /\  z  =  R ) ) }   =>    |-  F  e.  _V
 
Theoremoprabrexex2 7158* Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
 |-  A  e.  _V   &    |-  { <. <. x ,  y >. ,  z >.  |  ph }  e.  _V   =>    |-  {
 <. <. x ,  y >. ,  z >.  |  E. w  e.  A  ph }  e.  _V
 
Theoremab2rexex 7159* Existence of a class abstraction of existentially restricted sets. Variables  x and  y are normally free-variable parameters in the class expression substituted for  C, which can be thought of as  C ( x ,  y ). See comments for abrexex 7141. (Contributed by NM, 20-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 { z  |  E. x  e.  A  E. y  e.  B  z  =  C }  e.  _V
 
Theoremab2rexex2 7160* Existence of an existentially restricted class abstraction.  ph normally has free-variable parameters  x,  y, and  z. Compare abrexex2 7148. (Contributed by NM, 20-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  { z  | 
 ph }  e.  _V   =>    |-  { z  |  E. x  e.  A  E. y  e.  B  ph
 }  e.  _V
 
TheoremxpexgALT 7161 Alternate proof of xpexg 6960 requiring Replacement (ax-rep 4771) but not Power Set (ax-pow 4843). (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B )  e.  _V )
 
Theoremoffval3 7162* General value of  ( F  oF R G ) with no assumptions on functionality of  F and  G. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
  x ) R ( G `  x ) ) ) )
 
Theoremoffres 7163 Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  oF R G )  |`  D )  =  ( ( F  |`  D )  oF R ( G  |`  D )
 ) )
 
Theoremofmres 7164* Equivalent expressions for a restriction of the function operation map. Unlike  oF R which is a proper class,  (  oF R  |  `  ( A  X.  B
) ) can be a set by ofmresex 7165, allowing it to be used as a function or structure argument. By ofmresval 6910, the restricted operation map values are the same as the original values, allowing theorems for  oF R to be reused. (Contributed by NM, 20-Oct-2014.)
 |-  (  oF R  |`  ( A  X.  B ) )  =  (
 f  e.  A ,  g  e.  B  |->  ( f  oF R g ) )
 
Theoremofmresex 7165 Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  (  oF R  |`  ( A  X.  B ) )  e.  _V )
 
2.4.7  First and second members of an ordered pair
 
Syntaxc1st 7166 Extend the definition of a class to include the first member an ordered pair function.
 class  1st
 
Syntaxc2nd 7167 Extend the definition of a class to include the second member an ordered pair function.
 class  2nd
 
Definitiondf-1st 7168 Define a function that extracts the first member, or abscissa, of an ordered pair. Theorem op1st 7176 proves that it does this. For example,  ( 1st ` 
<. 3 ,  4
>. )  =  3. Equivalent to Definition 5.13 (i) of [Monk1] p. 52 (compare op1sta 5617 and op1stb 4940). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
 |- 
 1st  =  ( x  e.  _V  |->  U. dom  { x } )
 
Definitiondf-2nd 7169 Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 7177 proves that it does this. For example,  ( 2nd ` 
<. 3 ,  4
>. )  =  4. Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 5620 and op2ndb 5619). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
 |- 
 2nd  =  ( x  e.  _V  |->  U. ran  { x } )
 
Theorem1stval 7170 The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( 1st `  A )  =  U. dom  { A }
 
Theorem2ndval 7171 The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( 2nd `  A )  =  U. ran  { A }
 
Theorem1stnpr 7172 Value of the first-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.)
 |-  ( -.  A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  (/) )
 
Theorem2ndnpr 7173 Value of the second-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.)
 |-  ( -.  A  e.  ( _V  X.  _V )  ->  ( 2nd `  A )  =  (/) )
 
Theorem1st0 7174 The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
 |-  ( 1st `  (/) )  =  (/)
 
Theorem2nd0 7175 The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
 |-  ( 2nd `  (/) )  =  (/)
 
Theoremop1st 7176 Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( 1st `  <. A ,  B >. )  =  A
 
Theoremop2nd 7177 Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( 2nd `  <. A ,  B >. )  =  B
 
Theoremop1std 7178 Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( C  =  <. A ,  B >.  ->  ( 1st `  C )  =  A )
 
Theoremop2ndd 7179 Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( C  =  <. A ,  B >.  ->  ( 2nd `  C )  =  B )
 
Theoremop1stg 7180 Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 1st `  <. A ,  B >. )  =  A )
 
Theoremop2ndg 7181 Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2nd `  <. A ,  B >. )  =  B )
 
Theoremot1stg 7182 Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 7182, ot2ndg 7183, ot3rdg 7184.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( 1st `  ( 1st `  <. A ,  B ,  C >. ) )  =  A )
 
Theoremot2ndg 7183 Extract the second member of an ordered triple. (See ot1stg 7182 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( 2nd `  ( 1st `  <. A ,  B ,  C >. ) )  =  B )
 
Theoremot3rdg 7184 Extract the third member of an ordered triple. (See ot1stg 7182 comment.) (Contributed by NM, 3-Apr-2015.)
 |-  ( C  e.  V  ->  ( 2nd `  <. A ,  B ,  C >. )  =  C )
 
Theorem1stval2 7185 Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
 |-  ( A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  |^| |^| A )
 
Theorem2ndval2 7186 Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
 |-  ( A  e.  ( _V  X.  _V )  ->  ( 2nd `  A )  =  |^| |^| |^| `' { A } )
 
Theoremoteqimp 7187 The components of an ordered triple. (Contributed by Alexander van der Vekens, 2-Mar-2018.)
 |-  ( T  =  <. A ,  B ,  C >.  ->  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( ( 1st `  ( 1st `  T ) )  =  A  /\  ( 2nd `  ( 1st `  T ) )  =  B  /\  ( 2nd `  T )  =  C )
 ) )
 
Theoremfo1st 7188 The  1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |- 
 1st : _V -onto-> _V
 
Theoremfo2nd 7189 The  2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |- 
 2nd : _V -onto-> _V
 
Theoremf1stres 7190 Mapping of a restriction of the 
1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) --> A
 
Theoremf2ndres 7191 Mapping of a restriction of the 
2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) --> B
 
Theoremfo1stres 7192 Onto mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.)
 |-  ( B  =/=  (/)  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
 
Theoremfo2ndres 7193 Onto mapping of a restriction of the  2nd (second member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.)
 |-  ( A  =/=  (/)  ->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> B )
 
Theorem1st2val 7194* Value of an alternate definition of the  1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( { <. <. x ,  y >. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A )
 
Theorem2nd2val 7195* Value of an alternate definition of the  2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( { <. <. x ,  y >. ,  z >.  |  z  =  y } `  A )  =  ( 2nd `  A )
 
Theorem1stcof 7196 Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.)
 |-  ( F : A --> ( B  X.  C ) 
 ->  ( 1st  o.  F ) : A --> B )
 
Theorem2ndcof 7197 Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.)
 |-  ( F : A --> ( B  X.  C ) 
 ->  ( 2nd  o.  F ) : A --> C )
 
Theoremxp1st 7198 Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  e.  ( B  X.  C )  ->  ( 1st `  A )  e.  B )
 
Theoremxp2nd 7199 Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  e.  ( B  X.  C )  ->  ( 2nd `  A )  e.  C )
 
Theoremelxp6 7200 Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7110. (Contributed by NM, 9-Oct-2004.)
 |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A ) >.  /\  (
 ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >