| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnprb | Structured version Visualization version Unicode version | ||
| Description: A function whose domain
has at most two elements can be represented as a
set of at most two ordered pairs. (Contributed by FL, 26-Jun-2011.)
(Proof shortened by Scott Fenton, 12-Oct-2017.) Revised to eliminate
unnecessary antecedent |
| Ref | Expression |
|---|---|
| fnprb.a |
|
| fnprb.b |
|
| Ref | Expression |
|---|---|
| fnprb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnprb.a |
. . . . . 6
| |
| 2 | 1 | fnsnb 6432 |
. . . . 5
|
| 3 | dfsn2 4190 |
. . . . . 6
| |
| 4 | 3 | fneq2i 5986 |
. . . . 5
|
| 5 | dfsn2 4190 |
. . . . . 6
| |
| 6 | 5 | eqeq2i 2634 |
. . . . 5
|
| 7 | 2, 4, 6 | 3bitr3i 290 |
. . . 4
|
| 8 | 7 | a1i 11 |
. . 3
|
| 9 | preq2 4269 |
. . . 4
| |
| 10 | 9 | fneq2d 5982 |
. . 3
|
| 11 | id 22 |
. . . . . 6
| |
| 12 | fveq2 6191 |
. . . . . 6
| |
| 13 | 11, 12 | opeq12d 4410 |
. . . . 5
|
| 14 | 13 | preq2d 4275 |
. . . 4
|
| 15 | 14 | eqeq2d 2632 |
. . 3
|
| 16 | 8, 10, 15 | 3bitr3d 298 |
. 2
|
| 17 | fndm 5990 |
. . . . . 6
| |
| 18 | fvex 6201 |
. . . . . . 7
| |
| 19 | fvex 6201 |
. . . . . . 7
| |
| 20 | 18, 19 | dmprop 5610 |
. . . . . 6
|
| 21 | 17, 20 | syl6eqr 2674 |
. . . . 5
|
| 22 | 21 | adantl 482 |
. . . 4
|
| 23 | 17 | adantl 482 |
. . . . . . 7
|
| 24 | 23 | eleq2d 2687 |
. . . . . 6
|
| 25 | vex 3203 |
. . . . . . . 8
| |
| 26 | 25 | elpr 4198 |
. . . . . . 7
|
| 27 | 1, 18 | fvpr1 6456 |
. . . . . . . . . . 11
|
| 28 | 27 | adantr 481 |
. . . . . . . . . 10
|
| 29 | 28 | eqcomd 2628 |
. . . . . . . . 9
|
| 30 | fveq2 6191 |
. . . . . . . . . 10
| |
| 31 | fveq2 6191 |
. . . . . . . . . 10
| |
| 32 | 30, 31 | eqeq12d 2637 |
. . . . . . . . 9
|
| 33 | 29, 32 | syl5ibrcom 237 |
. . . . . . . 8
|
| 34 | fnprb.b |
. . . . . . . . . . . 12
| |
| 35 | 34, 19 | fvpr2 6457 |
. . . . . . . . . . 11
|
| 36 | 35 | adantr 481 |
. . . . . . . . . 10
|
| 37 | 36 | eqcomd 2628 |
. . . . . . . . 9
|
| 38 | fveq2 6191 |
. . . . . . . . . 10
| |
| 39 | fveq2 6191 |
. . . . . . . . . 10
| |
| 40 | 38, 39 | eqeq12d 2637 |
. . . . . . . . 9
|
| 41 | 37, 40 | syl5ibrcom 237 |
. . . . . . . 8
|
| 42 | 33, 41 | jaod 395 |
. . . . . . 7
|
| 43 | 26, 42 | syl5bi 232 |
. . . . . 6
|
| 44 | 24, 43 | sylbid 230 |
. . . . 5
|
| 45 | 44 | ralrimiv 2965 |
. . . 4
|
| 46 | fnfun 5988 |
. . . . 5
| |
| 47 | 1, 34, 18, 19 | funpr 5944 |
. . . . 5
|
| 48 | eqfunfv 6316 |
. . . . 5
| |
| 49 | 46, 47, 48 | syl2anr 495 |
. . . 4
|
| 50 | 22, 45, 49 | mpbir2and 957 |
. . 3
|
| 51 | 20 | a1i 11 |
. . . . 5
|
| 52 | df-fn 5891 |
. . . . 5
| |
| 53 | 47, 51, 52 | sylanbrc 698 |
. . . 4
|
| 54 | fneq1 5979 |
. . . . 5
| |
| 55 | 54 | biimprd 238 |
. . . 4
|
| 56 | 53, 55 | mpan9 486 |
. . 3
|
| 57 | 50, 56 | impbida 877 |
. 2
|
| 58 | 16, 57 | pm2.61ine 2877 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
| This theorem is referenced by: fntpb 6473 fnpr2g 6474 wrd2pr2op 13687 |
| Copyright terms: Public domain | W3C validator |