MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnprb Structured version   Visualization version   Unicode version

Theorem fnprb 6472
Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by FL, 26-Jun-2011.) (Proof shortened by Scott Fenton, 12-Oct-2017.) Revised to eliminate unnecessary antecedent  A  =/=  B. (Revised by NM, 29-Dec-2018.)
Hypotheses
Ref Expression
fnprb.a  |-  A  e. 
_V
fnprb.b  |-  B  e. 
_V
Assertion
Ref Expression
fnprb  |-  ( F  Fn  { A ,  B }  <->  F  =  { <. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } )

Proof of Theorem fnprb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fnprb.a . . . . . 6  |-  A  e. 
_V
21fnsnb 6432 . . . . 5  |-  ( F  Fn  { A }  <->  F  =  { <. A , 
( F `  A
) >. } )
3 dfsn2 4190 . . . . . 6  |-  { A }  =  { A ,  A }
43fneq2i 5986 . . . . 5  |-  ( F  Fn  { A }  <->  F  Fn  { A ,  A } )
5 dfsn2 4190 . . . . . 6  |-  { <. A ,  ( F `  A ) >. }  =  { <. A ,  ( F `  A )
>. ,  <. A , 
( F `  A
) >. }
65eqeq2i 2634 . . . . 5  |-  ( F  =  { <. A , 
( F `  A
) >. }  <->  F  =  { <. A ,  ( F `  A )
>. ,  <. A , 
( F `  A
) >. } )
72, 4, 63bitr3i 290 . . . 4  |-  ( F  Fn  { A ,  A }  <->  F  =  { <. A ,  ( F `
 A ) >. ,  <. A ,  ( F `  A )
>. } )
87a1i 11 . . 3  |-  ( A  =  B  ->  ( F  Fn  { A ,  A }  <->  F  =  { <. A ,  ( F `  A )
>. ,  <. A , 
( F `  A
) >. } ) )
9 preq2 4269 . . . 4  |-  ( A  =  B  ->  { A ,  A }  =  { A ,  B }
)
109fneq2d 5982 . . 3  |-  ( A  =  B  ->  ( F  Fn  { A ,  A }  <->  F  Fn  { A ,  B }
) )
11 id 22 . . . . . 6  |-  ( A  =  B  ->  A  =  B )
12 fveq2 6191 . . . . . 6  |-  ( A  =  B  ->  ( F `  A )  =  ( F `  B ) )
1311, 12opeq12d 4410 . . . . 5  |-  ( A  =  B  ->  <. A , 
( F `  A
) >.  =  <. B , 
( F `  B
) >. )
1413preq2d 4275 . . . 4  |-  ( A  =  B  ->  { <. A ,  ( F `  A ) >. ,  <. A ,  ( F `  A ) >. }  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. } )
1514eqeq2d 2632 . . 3  |-  ( A  =  B  ->  ( F  =  { <. A , 
( F `  A
) >. ,  <. A , 
( F `  A
) >. }  <->  F  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. } ) )
168, 10, 153bitr3d 298 . 2  |-  ( A  =  B  ->  ( F  Fn  { A ,  B }  <->  F  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. } ) )
17 fndm 5990 . . . . . 6  |-  ( F  Fn  { A ,  B }  ->  dom  F  =  { A ,  B } )
18 fvex 6201 . . . . . . 7  |-  ( F `
 A )  e. 
_V
19 fvex 6201 . . . . . . 7  |-  ( F `
 B )  e. 
_V
2018, 19dmprop 5610 . . . . . 6  |-  dom  { <. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. }  =  { A ,  B }
2117, 20syl6eqr 2674 . . . . 5  |-  ( F  Fn  { A ,  B }  ->  dom  F  =  dom  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. } )
2221adantl 482 . . . 4  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  ->  dom  F  =  dom  { <. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } )
2317adantl 482 . . . . . . 7  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  ->  dom  F  =  { A ,  B } )
2423eleq2d 2687 . . . . . 6  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  -> 
( x  e.  dom  F  <-> 
x  e.  { A ,  B } ) )
25 vex 3203 . . . . . . . 8  |-  x  e. 
_V
2625elpr 4198 . . . . . . 7  |-  ( x  e.  { A ,  B }  <->  ( x  =  A  \/  x  =  B ) )
271, 18fvpr1 6456 . . . . . . . . . . 11  |-  ( A  =/=  B  ->  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. } `  A
)  =  ( F `
 A ) )
2827adantr 481 . . . . . . . . . 10  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  -> 
( { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. } `  A
)  =  ( F `
 A ) )
2928eqcomd 2628 . . . . . . . . 9  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  -> 
( F `  A
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } `  A ) )
30 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
31 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  A  ->  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. } `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } `  A ) )
3230, 31eqeq12d 2637 . . . . . . . . 9  |-  ( x  =  A  ->  (
( F `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } `  x )  <-> 
( F `  A
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } `  A ) ) )
3329, 32syl5ibrcom 237 . . . . . . . 8  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  -> 
( x  =  A  ->  ( F `  x )  =  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. } `  x
) ) )
34 fnprb.b . . . . . . . . . . . 12  |-  B  e. 
_V
3534, 19fvpr2 6457 . . . . . . . . . . 11  |-  ( A  =/=  B  ->  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. } `  B
)  =  ( F `
 B ) )
3635adantr 481 . . . . . . . . . 10  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  -> 
( { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. } `  B
)  =  ( F `
 B ) )
3736eqcomd 2628 . . . . . . . . 9  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  -> 
( F `  B
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } `  B ) )
38 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
39 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  B  ->  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. } `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } `  B ) )
4038, 39eqeq12d 2637 . . . . . . . . 9  |-  ( x  =  B  ->  (
( F `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } `  x )  <-> 
( F `  B
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } `  B ) ) )
4137, 40syl5ibrcom 237 . . . . . . . 8  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  -> 
( x  =  B  ->  ( F `  x )  =  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. } `  x
) ) )
4233, 41jaod 395 . . . . . . 7  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  -> 
( ( x  =  A  \/  x  =  B )  ->  ( F `  x )  =  ( { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. } `  x ) ) )
4326, 42syl5bi 232 . . . . . 6  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  -> 
( x  e.  { A ,  B }  ->  ( F `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } `  x ) ) )
4424, 43sylbid 230 . . . . 5  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  -> 
( x  e.  dom  F  ->  ( F `  x )  =  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. } `  x
) ) )
4544ralrimiv 2965 . . . 4  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  ->  A. x  e.  dom  F ( F `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } `  x ) )
46 fnfun 5988 . . . . 5  |-  ( F  Fn  { A ,  B }  ->  Fun  F
)
471, 34, 18, 19funpr 5944 . . . . 5  |-  ( A  =/=  B  ->  Fun  {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } )
48 eqfunfv 6316 . . . . 5  |-  ( ( Fun  F  /\  Fun  {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } )  ->  ( F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. }  <->  ( dom  F  =  dom  { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. }  /\  A. x  e.  dom  F
( F `  x
)  =  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } `  x ) ) ) )
4946, 47, 48syl2anr 495 . . . 4  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  -> 
( F  =  { <. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. }  <->  ( dom  F  =  dom  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. }  /\  A. x  e.  dom  F ( F `  x )  =  ( { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. } `  x ) ) ) )
5022, 45, 49mpbir2and 957 . . 3  |-  ( ( A  =/=  B  /\  F  Fn  { A ,  B } )  ->  F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. } )
5120a1i 11 . . . . 5  |-  ( A  =/=  B  ->  dom  {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. }  =  { A ,  B } )
52 df-fn 5891 . . . . 5  |-  ( {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. }  Fn  { A ,  B }  <->  ( Fun  {
<. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. }  /\  dom  { <. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. }  =  { A ,  B } ) )
5347, 51, 52sylanbrc 698 . . . 4  |-  ( A  =/=  B  ->  { <. A ,  ( F `  A ) >. ,  <. B ,  ( F `  B ) >. }  Fn  { A ,  B }
)
54 fneq1 5979 . . . . 5  |-  ( F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. }  ->  ( F  Fn  { A ,  B }  <->  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. }  Fn  { A ,  B }
) )
5554biimprd 238 . . . 4  |-  ( F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. }  ->  ( { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. }  Fn  { A ,  B }  ->  F  Fn  { A ,  B } ) )
5653, 55mpan9 486 . . 3  |-  ( ( A  =/=  B  /\  F  =  { <. A , 
( F `  A
) >. ,  <. B , 
( F `  B
) >. } )  ->  F  Fn  { A ,  B } )
5750, 56impbida 877 . 2  |-  ( A  =/=  B  ->  ( F  Fn  { A ,  B }  <->  F  =  { <. A ,  ( F `  A )
>. ,  <. B , 
( F `  B
) >. } ) )
5816, 57pm2.61ine 2877 1  |-  ( F  Fn  { A ,  B }  <->  F  =  { <. A ,  ( F `
 A ) >. ,  <. B ,  ( F `  B )
>. } )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   {csn 4177   {cpr 4179   <.cop 4183   dom cdm 5114   Fun wfun 5882    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  fntpb  6473  fnpr2g  6474  wrd2pr2op  13687
  Copyright terms: Public domain W3C validator