Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2lem1 Structured version   Visualization version   Unicode version

Theorem fnwe2lem1 37620
Description: Lemma for fnwe2 37623. Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su  |-  ( z  =  ( F `  x )  ->  S  =  U )
fnwe2.t  |-  T  =  { <. x ,  y
>.  |  ( ( F `  x ) R ( F `  y )  \/  (
( F `  x
)  =  ( F `
 y )  /\  x U y ) ) }
fnwe2.s  |-  ( (
ph  /\  x  e.  A )  ->  U  We  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
Assertion
Ref Expression
fnwe2lem1  |-  ( (
ph  /\  a  e.  A )  ->  [_ ( F `  a )  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) } )
Distinct variable groups:    y, U, z, a    x, S, y, a    x, R, y, a    ph, x, y, z   
x, A, y, z, a    x, F, y, z, a    T, a
Allowed substitution hints:    ph( a)    R( z)    S( z)    T( x, y, z)    U( x)

Proof of Theorem fnwe2lem1
StepHypRef Expression
1 fnwe2.s . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  U  We  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
21ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  A  U  We  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
3 fveq2 6191 . . . . . . 7  |-  ( a  =  x  ->  ( F `  a )  =  ( F `  x ) )
43csbeq1d 3540 . . . . . 6  |-  ( a  =  x  ->  [_ ( F `  a )  /  z ]_ S  =  [_ ( F `  x )  /  z ]_ S )
5 fvex 6201 . . . . . . 7  |-  ( F `
 x )  e. 
_V
6 fnwe2.su . . . . . . 7  |-  ( z  =  ( F `  x )  ->  S  =  U )
75, 6csbie 3559 . . . . . 6  |-  [_ ( F `  x )  /  z ]_ S  =  U
84, 7syl6eq 2672 . . . . 5  |-  ( a  =  x  ->  [_ ( F `  a )  /  z ]_ S  =  U )
93eqeq2d 2632 . . . . . 6  |-  ( a  =  x  ->  (
( F `  y
)  =  ( F `
 a )  <->  ( F `  y )  =  ( F `  x ) ) )
109rabbidv 3189 . . . . 5  |-  ( a  =  x  ->  { y  e.  A  |  ( F `  y )  =  ( F `  a ) }  =  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
118, 10weeq12d 37610 . . . 4  |-  ( a  =  x  ->  ( [_ ( F `  a
)  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) }  <->  U  We  { y  e.  A  | 
( F `  y
)  =  ( F `
 x ) } ) )
1211cbvralv 3171 . . 3  |-  ( A. a  e.  A  [_ ( F `  a )  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) }  <->  A. x  e.  A  U  We  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
132, 12sylibr 224 . 2  |-  ( ph  ->  A. a  e.  A  [_ ( F `  a
)  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) } )
1413r19.21bi 2932 1  |-  ( (
ph  /\  a  e.  A )  ->  [_ ( F `  a )  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   [_csb 3533   class class class wbr 4653   {copab 4712    We wwe 5072   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-iota 5851  df-fv 5896
This theorem is referenced by:  fnwe2lem2  37621  fnwe2lem3  37622
  Copyright terms: Public domain W3C validator