Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2val Structured version   Visualization version   Unicode version

Theorem fnwe2val 37619
Description: Lemma for fnwe2 37623. Substitute variables. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su  |-  ( z  =  ( F `  x )  ->  S  =  U )
fnwe2.t  |-  T  =  { <. x ,  y
>.  |  ( ( F `  x ) R ( F `  y )  \/  (
( F `  x
)  =  ( F `
 y )  /\  x U y ) ) }
Assertion
Ref Expression
fnwe2val  |-  ( a T b  <->  ( ( F `  a ) R ( F `  b )  \/  (
( F `  a
)  =  ( F `
 b )  /\  a [_ ( F `  a )  /  z ]_ S b ) ) )
Distinct variable groups:    y, U, z, a, b    x, S, y, a, b    x, R, y, a, b    x, z, F, y, a, b    T, a, b
Allowed substitution hints:    R( z)    S( z)    T( x, y, z)    U( x)

Proof of Theorem fnwe2val
StepHypRef Expression
1 vex 3203 . 2  |-  a  e. 
_V
2 vex 3203 . 2  |-  b  e. 
_V
3 fveq2 6191 . . . 4  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
4 fveq2 6191 . . . 4  |-  ( y  =  b  ->  ( F `  y )  =  ( F `  b ) )
53, 4breqan12d 4669 . . 3  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( F `  x ) R ( F `  y )  <-> 
( F `  a
) R ( F `
 b ) ) )
63, 4eqeqan12d 2638 . . . 4  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( F `  x )  =  ( F `  y )  <-> 
( F `  a
)  =  ( F `
 b ) ) )
7 simpl 473 . . . . 5  |-  ( ( x  =  a  /\  y  =  b )  ->  x  =  a )
8 fvex 6201 . . . . . . . 8  |-  ( F `
 x )  e. 
_V
9 fnwe2.su . . . . . . . 8  |-  ( z  =  ( F `  x )  ->  S  =  U )
108, 9csbie 3559 . . . . . . 7  |-  [_ ( F `  x )  /  z ]_ S  =  U
113csbeq1d 3540 . . . . . . 7  |-  ( x  =  a  ->  [_ ( F `  x )  /  z ]_ S  =  [_ ( F `  a )  /  z ]_ S )
1210, 11syl5eqr 2670 . . . . . 6  |-  ( x  =  a  ->  U  =  [_ ( F `  a )  /  z ]_ S )
1312adantr 481 . . . . 5  |-  ( ( x  =  a  /\  y  =  b )  ->  U  =  [_ ( F `  a )  /  z ]_ S
)
14 simpr 477 . . . . 5  |-  ( ( x  =  a  /\  y  =  b )  ->  y  =  b )
157, 13, 14breq123d 4667 . . . 4  |-  ( ( x  =  a  /\  y  =  b )  ->  ( x U y  <-> 
a [_ ( F `  a )  /  z ]_ S b ) )
166, 15anbi12d 747 . . 3  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( ( F `
 x )  =  ( F `  y
)  /\  x U
y )  <->  ( ( F `  a )  =  ( F `  b )  /\  a [_ ( F `  a
)  /  z ]_ S b ) ) )
175, 16orbi12d 746 . 2  |-  ( ( x  =  a  /\  y  =  b )  ->  ( ( ( F `
 x ) R ( F `  y
)  \/  ( ( F `  x )  =  ( F `  y )  /\  x U y ) )  <-> 
( ( F `  a ) R ( F `  b )  \/  ( ( F `
 a )  =  ( F `  b
)  /\  a [_ ( F `  a )  /  z ]_ S
b ) ) ) )
18 fnwe2.t . 2  |-  T  =  { <. x ,  y
>.  |  ( ( F `  x ) R ( F `  y )  \/  (
( F `  x
)  =  ( F `
 y )  /\  x U y ) ) }
191, 2, 17, 18braba 4992 1  |-  ( a T b  <->  ( ( F `  a ) R ( F `  b )  \/  (
( F `  a
)  =  ( F `
 b )  /\  a [_ ( F `  a )  /  z ]_ S b ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   [_csb 3533   class class class wbr 4653   {copab 4712   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896
This theorem is referenced by:  fnwe2lem2  37621  fnwe2lem3  37622
  Copyright terms: Public domain W3C validator