Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2lem3 Structured version   Visualization version   Unicode version

Theorem fnwe2lem3 37622
Description: Lemma for fnwe2 37623. Trichotomy. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su  |-  ( z  =  ( F `  x )  ->  S  =  U )
fnwe2.t  |-  T  =  { <. x ,  y
>.  |  ( ( F `  x ) R ( F `  y )  \/  (
( F `  x
)  =  ( F `
 y )  /\  x U y ) ) }
fnwe2.s  |-  ( (
ph  /\  x  e.  A )  ->  U  We  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
fnwe2.f  |-  ( ph  ->  ( F  |`  A ) : A --> B )
fnwe2.r  |-  ( ph  ->  R  We  B )
fnwe2lem3.a  |-  ( ph  ->  a  e.  A )
fnwe2lem3.b  |-  ( ph  ->  b  e.  A )
Assertion
Ref Expression
fnwe2lem3  |-  ( ph  ->  ( a T b  \/  a  =  b  \/  b T a ) )
Distinct variable groups:    y, U, z, a, b    x, S, y, a, b    x, R, y, a, b    ph, x, y, z    x, A, y, z, a, b    x, F, y, z, a, b    T, a, b    B, a, b
Allowed substitution hints:    ph( a, b)    B( x, y, z)    R( z)    S( z)    T( x, y, z)    U( x)

Proof of Theorem fnwe2lem3
StepHypRef Expression
1 orc 400 . . . . 5  |-  ( ( F `  a ) R ( F `  b )  ->  (
( F `  a
) R ( F `
 b )  \/  ( ( F `  a )  =  ( F `  b )  /\  a [_ ( F `  a )  /  z ]_ S
b ) ) )
21adantl 482 . . . 4  |-  ( (
ph  /\  ( F `  a ) R ( F `  b ) )  ->  ( ( F `  a ) R ( F `  b )  \/  (
( F `  a
)  =  ( F `
 b )  /\  a [_ ( F `  a )  /  z ]_ S b ) ) )
3 fnwe2.su . . . . 5  |-  ( z  =  ( F `  x )  ->  S  =  U )
4 fnwe2.t . . . . 5  |-  T  =  { <. x ,  y
>.  |  ( ( F `  x ) R ( F `  y )  \/  (
( F `  x
)  =  ( F `
 y )  /\  x U y ) ) }
53, 4fnwe2val 37619 . . . 4  |-  ( a T b  <->  ( ( F `  a ) R ( F `  b )  \/  (
( F `  a
)  =  ( F `
 b )  /\  a [_ ( F `  a )  /  z ]_ S b ) ) )
62, 5sylibr 224 . . 3  |-  ( (
ph  /\  ( F `  a ) R ( F `  b ) )  ->  a T
b )
763mix1d 1236 . 2  |-  ( (
ph  /\  ( F `  a ) R ( F `  b ) )  ->  ( a T b  \/  a  =  b  \/  b T a ) )
8 simplr 792 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  a )  =  ( F `  b ) )  /\  a [_ ( F `  a )  /  z ]_ S b )  -> 
( F `  a
)  =  ( F `
 b ) )
9 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  a )  =  ( F `  b ) )  /\  a [_ ( F `  a )  /  z ]_ S b )  -> 
a [_ ( F `  a )  /  z ]_ S b )
108, 9jca 554 . . . . . 6  |-  ( ( ( ph  /\  ( F `  a )  =  ( F `  b ) )  /\  a [_ ( F `  a )  /  z ]_ S b )  -> 
( ( F `  a )  =  ( F `  b )  /\  a [_ ( F `  a )  /  z ]_ S
b ) )
1110olcd 408 . . . . 5  |-  ( ( ( ph  /\  ( F `  a )  =  ( F `  b ) )  /\  a [_ ( F `  a )  /  z ]_ S b )  -> 
( ( F `  a ) R ( F `  b )  \/  ( ( F `
 a )  =  ( F `  b
)  /\  a [_ ( F `  a )  /  z ]_ S
b ) ) )
1211, 5sylibr 224 . . . 4  |-  ( ( ( ph  /\  ( F `  a )  =  ( F `  b ) )  /\  a [_ ( F `  a )  /  z ]_ S b )  -> 
a T b )
13123mix1d 1236 . . 3  |-  ( ( ( ph  /\  ( F `  a )  =  ( F `  b ) )  /\  a [_ ( F `  a )  /  z ]_ S b )  -> 
( a T b  \/  a  =  b  \/  b T a ) )
14 3mix2 1231 . . . 4  |-  ( a  =  b  ->  (
a T b  \/  a  =  b  \/  b T a ) )
1514adantl 482 . . 3  |-  ( ( ( ph  /\  ( F `  a )  =  ( F `  b ) )  /\  a  =  b )  ->  ( a T b  \/  a  =  b  \/  b T a ) )
16 simplr 792 . . . . . . . 8  |-  ( ( ( ph  /\  ( F `  a )  =  ( F `  b ) )  /\  b [_ ( F `  a )  /  z ]_ S a )  -> 
( F `  a
)  =  ( F `
 b ) )
1716eqcomd 2628 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  a )  =  ( F `  b ) )  /\  b [_ ( F `  a )  /  z ]_ S a )  -> 
( F `  b
)  =  ( F `
 a ) )
18 csbeq1 3536 . . . . . . . . . 10  |-  ( ( F `  a )  =  ( F `  b )  ->  [_ ( F `  a )  /  z ]_ S  =  [_ ( F `  b )  /  z ]_ S )
1918adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  ( F `  a )  =  ( F `  b ) )  ->  [_ ( F `
 a )  / 
z ]_ S  =  [_ ( F `  b )  /  z ]_ S
)
2019breqd 4664 . . . . . . . 8  |-  ( (
ph  /\  ( F `  a )  =  ( F `  b ) )  ->  ( b [_ ( F `  a
)  /  z ]_ S a  <->  b [_ ( F `  b )  /  z ]_ S
a ) )
2120biimpa 501 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  a )  =  ( F `  b ) )  /\  b [_ ( F `  a )  /  z ]_ S a )  -> 
b [_ ( F `  b )  /  z ]_ S a )
2217, 21jca 554 . . . . . 6  |-  ( ( ( ph  /\  ( F `  a )  =  ( F `  b ) )  /\  b [_ ( F `  a )  /  z ]_ S a )  -> 
( ( F `  b )  =  ( F `  a )  /\  b [_ ( F `  b )  /  z ]_ S
a ) )
2322olcd 408 . . . . 5  |-  ( ( ( ph  /\  ( F `  a )  =  ( F `  b ) )  /\  b [_ ( F `  a )  /  z ]_ S a )  -> 
( ( F `  b ) R ( F `  a )  \/  ( ( F `
 b )  =  ( F `  a
)  /\  b [_ ( F `  b )  /  z ]_ S
a ) ) )
243, 4fnwe2val 37619 . . . . 5  |-  ( b T a  <->  ( ( F `  b ) R ( F `  a )  \/  (
( F `  b
)  =  ( F `
 a )  /\  b [_ ( F `  b )  /  z ]_ S a ) ) )
2523, 24sylibr 224 . . . 4  |-  ( ( ( ph  /\  ( F `  a )  =  ( F `  b ) )  /\  b [_ ( F `  a )  /  z ]_ S a )  -> 
b T a )
26253mix3d 1238 . . 3  |-  ( ( ( ph  /\  ( F `  a )  =  ( F `  b ) )  /\  b [_ ( F `  a )  /  z ]_ S a )  -> 
( a T b  \/  a  =  b  \/  b T a ) )
27 fnwe2lem3.a . . . . . . 7  |-  ( ph  ->  a  e.  A )
28 fnwe2.s . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  U  We  { y  e.  A  |  ( F `  y )  =  ( F `  x ) } )
293, 4, 28fnwe2lem1 37620 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  [_ ( F `  a )  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) } )
3027, 29mpdan 702 . . . . . 6  |-  ( ph  ->  [_ ( F `  a )  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) } )
31 weso 5105 . . . . . 6  |-  ( [_ ( F `  a )  /  z ]_ S  We  { y  e.  A  |  ( F `  y )  =  ( F `  a ) }  ->  [_ ( F `
 a )  / 
z ]_ S  Or  {
y  e.  A  | 
( F `  y
)  =  ( F `
 a ) } )
3230, 31syl 17 . . . . 5  |-  ( ph  ->  [_ ( F `  a )  /  z ]_ S  Or  { y  e.  A  |  ( F `  y )  =  ( F `  a ) } )
3332adantr 481 . . . 4  |-  ( (
ph  /\  ( F `  a )  =  ( F `  b ) )  ->  [_ ( F `
 a )  / 
z ]_ S  Or  {
y  e.  A  | 
( F `  y
)  =  ( F `
 a ) } )
3427adantr 481 . . . . 5  |-  ( (
ph  /\  ( F `  a )  =  ( F `  b ) )  ->  a  e.  A )
35 eqidd 2623 . . . . 5  |-  ( (
ph  /\  ( F `  a )  =  ( F `  b ) )  ->  ( F `  a )  =  ( F `  a ) )
36 fveq2 6191 . . . . . . 7  |-  ( y  =  a  ->  ( F `  y )  =  ( F `  a ) )
3736eqeq1d 2624 . . . . . 6  |-  ( y  =  a  ->  (
( F `  y
)  =  ( F `
 a )  <->  ( F `  a )  =  ( F `  a ) ) )
3837elrab 3363 . . . . 5  |-  ( a  e.  { y  e.  A  |  ( F `
 y )  =  ( F `  a
) }  <->  ( a  e.  A  /\  ( F `  a )  =  ( F `  a ) ) )
3934, 35, 38sylanbrc 698 . . . 4  |-  ( (
ph  /\  ( F `  a )  =  ( F `  b ) )  ->  a  e.  { y  e.  A  | 
( F `  y
)  =  ( F `
 a ) } )
40 fnwe2lem3.b . . . . . 6  |-  ( ph  ->  b  e.  A )
4140adantr 481 . . . . 5  |-  ( (
ph  /\  ( F `  a )  =  ( F `  b ) )  ->  b  e.  A )
42 simpr 477 . . . . . 6  |-  ( (
ph  /\  ( F `  a )  =  ( F `  b ) )  ->  ( F `  a )  =  ( F `  b ) )
4342eqcomd 2628 . . . . 5  |-  ( (
ph  /\  ( F `  a )  =  ( F `  b ) )  ->  ( F `  b )  =  ( F `  a ) )
44 fveq2 6191 . . . . . . 7  |-  ( y  =  b  ->  ( F `  y )  =  ( F `  b ) )
4544eqeq1d 2624 . . . . . 6  |-  ( y  =  b  ->  (
( F `  y
)  =  ( F `
 a )  <->  ( F `  b )  =  ( F `  a ) ) )
4645elrab 3363 . . . . 5  |-  ( b  e.  { y  e.  A  |  ( F `
 y )  =  ( F `  a
) }  <->  ( b  e.  A  /\  ( F `  b )  =  ( F `  a ) ) )
4741, 43, 46sylanbrc 698 . . . 4  |-  ( (
ph  /\  ( F `  a )  =  ( F `  b ) )  ->  b  e.  { y  e.  A  | 
( F `  y
)  =  ( F `
 a ) } )
48 solin 5058 . . . 4  |-  ( (
[_ ( F `  a )  /  z ]_ S  Or  { y  e.  A  |  ( F `  y )  =  ( F `  a ) }  /\  ( a  e.  {
y  e.  A  | 
( F `  y
)  =  ( F `
 a ) }  /\  b  e.  {
y  e.  A  | 
( F `  y
)  =  ( F `
 a ) } ) )  ->  (
a [_ ( F `  a )  /  z ]_ S b  \/  a  =  b  \/  b [_ ( F `  a
)  /  z ]_ S a ) )
4933, 39, 47, 48syl12anc 1324 . . 3  |-  ( (
ph  /\  ( F `  a )  =  ( F `  b ) )  ->  ( a [_ ( F `  a
)  /  z ]_ S b  \/  a  =  b  \/  b [_ ( F `  a
)  /  z ]_ S a ) )
5013, 15, 26, 49mpjao3dan 1395 . 2  |-  ( (
ph  /\  ( F `  a )  =  ( F `  b ) )  ->  ( a T b  \/  a  =  b  \/  b T a ) )
51 orc 400 . . . . 5  |-  ( ( F `  b ) R ( F `  a )  ->  (
( F `  b
) R ( F `
 a )  \/  ( ( F `  b )  =  ( F `  a )  /\  b [_ ( F `  b )  /  z ]_ S
a ) ) )
5251adantl 482 . . . 4  |-  ( (
ph  /\  ( F `  b ) R ( F `  a ) )  ->  ( ( F `  b ) R ( F `  a )  \/  (
( F `  b
)  =  ( F `
 a )  /\  b [_ ( F `  b )  /  z ]_ S a ) ) )
5352, 24sylibr 224 . . 3  |-  ( (
ph  /\  ( F `  b ) R ( F `  a ) )  ->  b T
a )
54533mix3d 1238 . 2  |-  ( (
ph  /\  ( F `  b ) R ( F `  a ) )  ->  ( a T b  \/  a  =  b  \/  b T a ) )
55 fnwe2.r . . . 4  |-  ( ph  ->  R  We  B )
56 weso 5105 . . . 4  |-  ( R  We  B  ->  R  Or  B )
5755, 56syl 17 . . 3  |-  ( ph  ->  R  Or  B )
58 fvres 6207 . . . . 5  |-  ( a  e.  A  ->  (
( F  |`  A ) `
 a )  =  ( F `  a
) )
5927, 58syl 17 . . . 4  |-  ( ph  ->  ( ( F  |`  A ) `  a
)  =  ( F `
 a ) )
60 fnwe2.f . . . . 5  |-  ( ph  ->  ( F  |`  A ) : A --> B )
6160, 27ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( ( F  |`  A ) `  a
)  e.  B )
6259, 61eqeltrrd 2702 . . 3  |-  ( ph  ->  ( F `  a
)  e.  B )
63 fvres 6207 . . . . 5  |-  ( b  e.  A  ->  (
( F  |`  A ) `
 b )  =  ( F `  b
) )
6440, 63syl 17 . . . 4  |-  ( ph  ->  ( ( F  |`  A ) `  b
)  =  ( F `
 b ) )
6560, 40ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( ( F  |`  A ) `  b
)  e.  B )
6664, 65eqeltrrd 2702 . . 3  |-  ( ph  ->  ( F `  b
)  e.  B )
67 solin 5058 . . 3  |-  ( ( R  Or  B  /\  ( ( F `  a )  e.  B  /\  ( F `  b
)  e.  B ) )  ->  ( ( F `  a ) R ( F `  b )  \/  ( F `  a )  =  ( F `  b )  \/  ( F `  b ) R ( F `  a ) ) )
6857, 62, 66, 67syl12anc 1324 . 2  |-  ( ph  ->  ( ( F `  a ) R ( F `  b )  \/  ( F `  a )  =  ( F `  b )  \/  ( F `  b ) R ( F `  a ) ) )
697, 50, 54, 68mpjao3dan 1395 1  |-  ( ph  ->  ( a T b  \/  a  =  b  \/  b T a ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   {crab 2916   [_csb 3533   class class class wbr 4653   {copab 4712    Or wor 5034    We wwe 5072    |` cres 5116   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  fnwe2  37623
  Copyright terms: Public domain W3C validator