| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnwe2lem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for fnwe2 37623. Trichotomy. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| fnwe2.su |
|
| fnwe2.t |
|
| fnwe2.s |
|
| fnwe2.f |
|
| fnwe2.r |
|
| fnwe2lem3.a |
|
| fnwe2lem3.b |
|
| Ref | Expression |
|---|---|
| fnwe2lem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 400 |
. . . . 5
| |
| 2 | 1 | adantl 482 |
. . . 4
|
| 3 | fnwe2.su |
. . . . 5
| |
| 4 | fnwe2.t |
. . . . 5
| |
| 5 | 3, 4 | fnwe2val 37619 |
. . . 4
|
| 6 | 2, 5 | sylibr 224 |
. . 3
|
| 7 | 6 | 3mix1d 1236 |
. 2
|
| 8 | simplr 792 |
. . . . . . 7
| |
| 9 | simpr 477 |
. . . . . . 7
| |
| 10 | 8, 9 | jca 554 |
. . . . . 6
|
| 11 | 10 | olcd 408 |
. . . . 5
|
| 12 | 11, 5 | sylibr 224 |
. . . 4
|
| 13 | 12 | 3mix1d 1236 |
. . 3
|
| 14 | 3mix2 1231 |
. . . 4
| |
| 15 | 14 | adantl 482 |
. . 3
|
| 16 | simplr 792 |
. . . . . . . 8
| |
| 17 | 16 | eqcomd 2628 |
. . . . . . 7
|
| 18 | csbeq1 3536 |
. . . . . . . . . 10
| |
| 19 | 18 | adantl 482 |
. . . . . . . . 9
|
| 20 | 19 | breqd 4664 |
. . . . . . . 8
|
| 21 | 20 | biimpa 501 |
. . . . . . 7
|
| 22 | 17, 21 | jca 554 |
. . . . . 6
|
| 23 | 22 | olcd 408 |
. . . . 5
|
| 24 | 3, 4 | fnwe2val 37619 |
. . . . 5
|
| 25 | 23, 24 | sylibr 224 |
. . . 4
|
| 26 | 25 | 3mix3d 1238 |
. . 3
|
| 27 | fnwe2lem3.a |
. . . . . . 7
| |
| 28 | fnwe2.s |
. . . . . . . 8
| |
| 29 | 3, 4, 28 | fnwe2lem1 37620 |
. . . . . . 7
|
| 30 | 27, 29 | mpdan 702 |
. . . . . 6
|
| 31 | weso 5105 |
. . . . . 6
| |
| 32 | 30, 31 | syl 17 |
. . . . 5
|
| 33 | 32 | adantr 481 |
. . . 4
|
| 34 | 27 | adantr 481 |
. . . . 5
|
| 35 | eqidd 2623 |
. . . . 5
| |
| 36 | fveq2 6191 |
. . . . . . 7
| |
| 37 | 36 | eqeq1d 2624 |
. . . . . 6
|
| 38 | 37 | elrab 3363 |
. . . . 5
|
| 39 | 34, 35, 38 | sylanbrc 698 |
. . . 4
|
| 40 | fnwe2lem3.b |
. . . . . 6
| |
| 41 | 40 | adantr 481 |
. . . . 5
|
| 42 | simpr 477 |
. . . . . 6
| |
| 43 | 42 | eqcomd 2628 |
. . . . 5
|
| 44 | fveq2 6191 |
. . . . . . 7
| |
| 45 | 44 | eqeq1d 2624 |
. . . . . 6
|
| 46 | 45 | elrab 3363 |
. . . . 5
|
| 47 | 41, 43, 46 | sylanbrc 698 |
. . . 4
|
| 48 | solin 5058 |
. . . 4
| |
| 49 | 33, 39, 47, 48 | syl12anc 1324 |
. . 3
|
| 50 | 13, 15, 26, 49 | mpjao3dan 1395 |
. 2
|
| 51 | orc 400 |
. . . . 5
| |
| 52 | 51 | adantl 482 |
. . . 4
|
| 53 | 52, 24 | sylibr 224 |
. . 3
|
| 54 | 53 | 3mix3d 1238 |
. 2
|
| 55 | fnwe2.r |
. . . 4
| |
| 56 | weso 5105 |
. . . 4
| |
| 57 | 55, 56 | syl 17 |
. . 3
|
| 58 | fvres 6207 |
. . . . 5
| |
| 59 | 27, 58 | syl 17 |
. . . 4
|
| 60 | fnwe2.f |
. . . . 5
| |
| 61 | 60, 27 | ffvelrnd 6360 |
. . . 4
|
| 62 | 59, 61 | eqeltrrd 2702 |
. . 3
|
| 63 | fvres 6207 |
. . . . 5
| |
| 64 | 40, 63 | syl 17 |
. . . 4
|
| 65 | 60, 40 | ffvelrnd 6360 |
. . . 4
|
| 66 | 64, 65 | eqeltrrd 2702 |
. . 3
|
| 67 | solin 5058 |
. . 3
| |
| 68 | 57, 62, 66, 67 | syl12anc 1324 |
. 2
|
| 69 | 7, 50, 54, 68 | mpjao3dan 1395 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 |
| This theorem is referenced by: fnwe2 37623 |
| Copyright terms: Public domain | W3C validator |