| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fo2ndf | Structured version Visualization version Unicode version | ||
| Description: The |
| Ref | Expression |
|---|---|
| fo2ndf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6045 |
. . . 4
| |
| 2 | dffn3 6054 |
. . . 4
| |
| 3 | 1, 2 | sylib 208 |
. . 3
|
| 4 | f2ndf 7283 |
. . 3
| |
| 5 | 3, 4 | syl 17 |
. 2
|
| 6 | 2, 4 | sylbi 207 |
. . . . 5
|
| 7 | 1, 6 | syl 17 |
. . . 4
|
| 8 | frn 6053 |
. . . 4
| |
| 9 | 7, 8 | syl 17 |
. . 3
|
| 10 | elrn2g 5313 |
. . . . . 6
| |
| 11 | 10 | ibi 256 |
. . . . 5
|
| 12 | fvres 6207 |
. . . . . . . . . 10
| |
| 13 | 12 | adantl 482 |
. . . . . . . . 9
|
| 14 | vex 3203 |
. . . . . . . . . 10
| |
| 15 | vex 3203 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | op2nd 7177 |
. . . . . . . . 9
|
| 17 | 13, 16 | syl6req 2673 |
. . . . . . . 8
|
| 18 | f2ndf 7283 |
. . . . . . . . . 10
| |
| 19 | ffn 6045 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | syl 17 |
. . . . . . . . 9
|
| 21 | fnfvelrn 6356 |
. . . . . . . . 9
| |
| 22 | 20, 21 | sylan 488 |
. . . . . . . 8
|
| 23 | 17, 22 | eqeltrd 2701 |
. . . . . . 7
|
| 24 | 23 | ex 450 |
. . . . . 6
|
| 25 | 24 | exlimdv 1861 |
. . . . 5
|
| 26 | 11, 25 | syl5 34 |
. . . 4
|
| 27 | 26 | ssrdv 3609 |
. . 3
|
| 28 | 9, 27 | eqssd 3620 |
. 2
|
| 29 | dffo2 6119 |
. 2
| |
| 30 | 5, 28, 29 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-2nd 7169 |
| This theorem is referenced by: f1o2ndf1 7285 |
| Copyright terms: Public domain | W3C validator |