MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2ndf Structured version   Visualization version   Unicode version

Theorem fo2ndf 7284
Description: The  2nd (second member of an ordered pair) function restricted to a function  F is a function of  F onto the range of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
fo2ndf  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F -onto-> ran  F
)

Proof of Theorem fo2ndf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6045 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
2 dffn3 6054 . . . 4  |-  ( F  Fn  A  <->  F : A
--> ran  F )
31, 2sylib 208 . . 3  |-  ( F : A --> B  ->  F : A --> ran  F
)
4 f2ndf 7283 . . 3  |-  ( F : A --> ran  F  ->  ( 2nd  |`  F ) : F --> ran  F
)
53, 4syl 17 . 2  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> ran  F
)
62, 4sylbi 207 . . . . 5  |-  ( F  Fn  A  ->  ( 2nd  |`  F ) : F --> ran  F )
71, 6syl 17 . . . 4  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> ran  F
)
8 frn 6053 . . . 4  |-  ( ( 2nd  |`  F ) : F --> ran  F  ->  ran  ( 2nd  |`  F ) 
C_  ran  F )
97, 8syl 17 . . 3  |-  ( F : A --> B  ->  ran  ( 2nd  |`  F ) 
C_  ran  F )
10 elrn2g 5313 . . . . . 6  |-  ( y  e.  ran  F  -> 
( y  e.  ran  F  <->  E. x <. x ,  y
>.  e.  F ) )
1110ibi 256 . . . . 5  |-  ( y  e.  ran  F  ->  E. x <. x ,  y
>.  e.  F )
12 fvres 6207 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  F  ->  ( ( 2nd  |`  F ) `  <. x ,  y
>. )  =  ( 2nd `  <. x ,  y
>. ) )
1312adantl 482 . . . . . . . . 9  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  (
( 2nd  |`  F ) `
 <. x ,  y
>. )  =  ( 2nd `  <. x ,  y
>. ) )
14 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
15 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
1614, 15op2nd 7177 . . . . . . . . 9  |-  ( 2nd `  <. x ,  y
>. )  =  y
1713, 16syl6req 2673 . . . . . . . 8  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  y  =  ( ( 2nd  |`  F ) `  <. x ,  y >. )
)
18 f2ndf 7283 . . . . . . . . . 10  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> B )
19 ffn 6045 . . . . . . . . . 10  |-  ( ( 2nd  |`  F ) : F --> B  ->  ( 2nd  |`  F )  Fn  F )
2018, 19syl 17 . . . . . . . . 9  |-  ( F : A --> B  -> 
( 2nd  |`  F )  Fn  F )
21 fnfvelrn 6356 . . . . . . . . 9  |-  ( ( ( 2nd  |`  F )  Fn  F  /\  <. x ,  y >.  e.  F
)  ->  ( ( 2nd  |`  F ) `  <. x ,  y >.
)  e.  ran  ( 2nd  |`  F ) )
2220, 21sylan 488 . . . . . . . 8  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  (
( 2nd  |`  F ) `
 <. x ,  y
>. )  e.  ran  ( 2nd  |`  F )
)
2317, 22eqeltrd 2701 . . . . . . 7  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  y  e.  ran  ( 2nd  |`  F ) )
2423ex 450 . . . . . 6  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  ->  y  e.  ran  ( 2nd  |`  F ) ) )
2524exlimdv 1861 . . . . 5  |-  ( F : A --> B  -> 
( E. x <. x ,  y >.  e.  F  ->  y  e.  ran  ( 2nd  |`  F ) ) )
2611, 25syl5 34 . . . 4  |-  ( F : A --> B  -> 
( y  e.  ran  F  ->  y  e.  ran  ( 2nd  |`  F )
) )
2726ssrdv 3609 . . 3  |-  ( F : A --> B  ->  ran  F  C_  ran  ( 2nd  |`  F ) )
289, 27eqssd 3620 . 2  |-  ( F : A --> B  ->  ran  ( 2nd  |`  F )  =  ran  F )
29 dffo2 6119 . 2  |-  ( ( 2nd  |`  F ) : F -onto-> ran  F  <->  ( ( 2nd  |`  F ) : F --> ran  F  /\  ran  ( 2nd  |`  F )  =  ran  F ) )
305, 28, 29sylanbrc 698 1  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F -onto-> ran  F
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    C_ wss 3574   <.cop 4183   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-2nd 7169
This theorem is referenced by:  f1o2ndf1  7285
  Copyright terms: Public domain W3C validator