| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fompt | Structured version Visualization version Unicode version | ||
| Description: Express being onto for a mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| fompt.1 |
|
| Ref | Expression |
|---|---|
| fompt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fompt.1 |
. . . . . . 7
| |
| 2 | nfmpt1 4747 |
. . . . . . 7
| |
| 3 | 1, 2 | nfcxfr 2762 |
. . . . . 6
|
| 4 | 3 | dffo3f 39364 |
. . . . 5
|
| 5 | 4 | simplbi 476 |
. . . 4
|
| 6 | 1 | fmpt 6381 |
. . . . . 6
|
| 7 | 6 | bicomi 214 |
. . . . 5
|
| 8 | 7 | biimpi 206 |
. . . 4
|
| 9 | 5, 8 | syl 17 |
. . 3
|
| 10 | 3 | foelrnf 39373 |
. . . . 5
|
| 11 | nfcv 2764 |
. . . . . . . 8
| |
| 12 | nfcv 2764 |
. . . . . . . 8
| |
| 13 | 3, 11, 12 | nffo 6114 |
. . . . . . 7
|
| 14 | simpr 477 |
. . . . . . . . . 10
| |
| 15 | simpr 477 |
. . . . . . . . . . . 12
| |
| 16 | 9 | r19.21bi 2932 |
. . . . . . . . . . . 12
|
| 17 | 1 | fvmpt2 6291 |
. . . . . . . . . . . 12
|
| 18 | 15, 16, 17 | syl2anc 693 |
. . . . . . . . . . 11
|
| 19 | 18 | adantr 481 |
. . . . . . . . . 10
|
| 20 | 14, 19 | eqtrd 2656 |
. . . . . . . . 9
|
| 21 | 20 | ex 450 |
. . . . . . . 8
|
| 22 | 21 | ex 450 |
. . . . . . 7
|
| 23 | 13, 22 | reximdai 3012 |
. . . . . 6
|
| 24 | 23 | adantr 481 |
. . . . 5
|
| 25 | 10, 24 | mpd 15 |
. . . 4
|
| 26 | 25 | ralrimiva 2966 |
. . 3
|
| 27 | 9, 26 | jca 554 |
. 2
|
| 28 | 6 | biimpi 206 |
. . . . 5
|
| 29 | 28 | adantr 481 |
. . . 4
|
| 30 | nfv 1843 |
. . . . . 6
| |
| 31 | nfra1 2941 |
. . . . . 6
| |
| 32 | 30, 31 | nfan 1828 |
. . . . 5
|
| 33 | simpll 790 |
. . . . . . 7
| |
| 34 | rspa 2930 |
. . . . . . . 8
| |
| 35 | 34 | adantll 750 |
. . . . . . 7
|
| 36 | nfra1 2941 |
. . . . . . . . 9
| |
| 37 | simp3 1063 |
. . . . . . . . . . 11
| |
| 38 | simpr 477 |
. . . . . . . . . . . . . 14
| |
| 39 | rspa 2930 |
. . . . . . . . . . . . . 14
| |
| 40 | 38, 39, 17 | syl2anc 693 |
. . . . . . . . . . . . 13
|
| 41 | 40 | eqcomd 2628 |
. . . . . . . . . . . 12
|
| 42 | 41 | 3adant3 1081 |
. . . . . . . . . . 11
|
| 43 | 37, 42 | eqtrd 2656 |
. . . . . . . . . 10
|
| 44 | 43 | 3exp 1264 |
. . . . . . . . 9
|
| 45 | 36, 44 | reximdai 3012 |
. . . . . . . 8
|
| 46 | 45 | imp 445 |
. . . . . . 7
|
| 47 | 33, 35, 46 | syl2anc 693 |
. . . . . 6
|
| 48 | 47 | ex 450 |
. . . . 5
|
| 49 | 32, 48 | ralrimi 2957 |
. . . 4
|
| 50 | 29, 49 | jca 554 |
. . 3
|
| 51 | 50, 4 | sylibr 224 |
. 2
|
| 52 | 27, 51 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 |
| This theorem is referenced by: disjinfi 39380 |
| Copyright terms: Public domain | W3C validator |