Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffo3f Structured version   Visualization version   Unicode version

Theorem dffo3f 39364
Description: An onto mapping expressed in terms of function values. As dffo3 6374 but with less disjoint vars constraints. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
dffo3f.1  |-  F/_ x F
Assertion
Ref Expression
dffo3f  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
Distinct variable groups:    x, A, y    x, B, y    y, F
Allowed substitution hint:    F( x)

Proof of Theorem dffo3f
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dffo2 6119 . 2  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )
2 ffn 6045 . . . . 5  |-  ( F : A --> B  ->  F  Fn  A )
3 fnrnfv 6242 . . . . . . 7  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. w  e.  A  y  =  ( F `  w ) } )
4 nfcv 2764 . . . . . . . . . . 11  |-  F/_ x
y
5 dffo3f.1 . . . . . . . . . . . 12  |-  F/_ x F
6 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ x w
75, 6nffv 6198 . . . . . . . . . . 11  |-  F/_ x
( F `  w
)
84, 7nfeq 2776 . . . . . . . . . 10  |-  F/ x  y  =  ( F `  w )
9 nfv 1843 . . . . . . . . . 10  |-  F/ w  y  =  ( F `  x )
10 fveq2 6191 . . . . . . . . . . 11  |-  ( w  =  x  ->  ( F `  w )  =  ( F `  x ) )
1110eqeq2d 2632 . . . . . . . . . 10  |-  ( w  =  x  ->  (
y  =  ( F `
 w )  <->  y  =  ( F `  x ) ) )
128, 9, 11cbvrex 3168 . . . . . . . . 9  |-  ( E. w  e.  A  y  =  ( F `  w )  <->  E. x  e.  A  y  =  ( F `  x ) )
1312abbii 2739 . . . . . . . 8  |-  { y  |  E. w  e.  A  y  =  ( F `  w ) }  =  { y  |  E. x  e.  A  y  =  ( F `  x ) }
1413a1i 11 . . . . . . 7  |-  ( F  Fn  A  ->  { y  |  E. w  e.  A  y  =  ( F `  w ) }  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
153, 14eqtrd 2656 . . . . . 6  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
1615eqeq1d 2624 . . . . 5  |-  ( F  Fn  A  ->  ( ran  F  =  B  <->  { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B ) )
172, 16syl 17 . . . 4  |-  ( F : A --> B  -> 
( ran  F  =  B 
<->  { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B ) )
18 nfcv 2764 . . . . . . . . . 10  |-  F/_ x A
19 nfcv 2764 . . . . . . . . . 10  |-  F/_ x B
205, 18, 19nff 6041 . . . . . . . . 9  |-  F/ x  F : A --> B
21 nfv 1843 . . . . . . . . 9  |-  F/ x  y  e.  B
22 simpr 477 . . . . . . . . . . 11  |-  ( ( ( F : A --> B  /\  x  e.  A
)  /\  y  =  ( F `  x ) )  ->  y  =  ( F `  x ) )
23 ffvelrn 6357 . . . . . . . . . . . 12  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
2423adantr 481 . . . . . . . . . . 11  |-  ( ( ( F : A --> B  /\  x  e.  A
)  /\  y  =  ( F `  x ) )  ->  ( F `  x )  e.  B
)
2522, 24eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( F : A --> B  /\  x  e.  A
)  /\  y  =  ( F `  x ) )  ->  y  e.  B )
2625exp31 630 . . . . . . . . 9  |-  ( F : A --> B  -> 
( x  e.  A  ->  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
2720, 21, 26rexlimd 3026 . . . . . . . 8  |-  ( F : A --> B  -> 
( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) )
2827biantrurd 529 . . . . . . 7  |-  ( F : A --> B  -> 
( ( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) )  <->  ( ( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B )  /\  (
y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) ) )
29 dfbi2 660 . . . . . . 7  |-  ( ( E. x  e.  A  y  =  ( F `  x )  <->  y  e.  B )  <->  ( ( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B )  /\  (
y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) )
3028, 29syl6rbbr 279 . . . . . 6  |-  ( F : A --> B  -> 
( ( E. x  e.  A  y  =  ( F `  x )  <-> 
y  e.  B )  <-> 
( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) )
3130albidv 1849 . . . . 5  |-  ( F : A --> B  -> 
( A. y ( E. x  e.  A  y  =  ( F `  x )  <->  y  e.  B )  <->  A. y
( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) )
32 abeq1 2733 . . . . 5  |-  ( { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B  <->  A. y
( E. x  e.  A  y  =  ( F `  x )  <-> 
y  e.  B ) )
33 df-ral 2917 . . . . 5  |-  ( A. y  e.  B  E. x  e.  A  y  =  ( F `  x )  <->  A. y
( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) )
3431, 32, 333bitr4g 303 . . . 4  |-  ( F : A --> B  -> 
( { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B 
<-> 
A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
3517, 34bitrd 268 . . 3  |-  ( F : A --> B  -> 
( ran  F  =  B 
<-> 
A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
3635pm5.32i 669 . 2  |-  ( ( F : A --> B  /\  ran  F  =  B )  <-> 
( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
371, 36bitri 264 1  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   F/_wnfc 2751   A.wral 2912   E.wrex 2913   ran crn 5115    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896
This theorem is referenced by:  foelrnf  39373  fompt  39379
  Copyright terms: Public domain W3C validator