![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > weeq2 | Structured version Visualization version Unicode version |
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
weeq2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | freq2 5085 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | soeq2 5055 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | anbi12d 747 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | df-we 5075 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | df-we 5075 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 3, 4, 5 | 3bitr4g 303 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ral 2917 df-in 3581 df-ss 3588 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 |
This theorem is referenced by: ordeq 5730 0we1 7586 oieq2 8418 hartogslem1 8447 wemapwe 8594 ween 8858 dfac8 8957 weth 9317 fpwwe2cbv 9452 fpwwe2lem2 9454 fpwwe2lem5 9456 fpwwecbv 9466 fpwwelem 9467 canthwelem 9472 canthwe 9473 pwfseqlem4a 9483 pwfseqlem4 9484 ltweuz 12760 ltwenn 12761 bpolylem 14779 ltbwe 19472 vitali 23382 weeq12d 37610 aomclem6 37629 omeiunle 40731 |
Copyright terms: Public domain | W3C validator |