Step | Hyp | Ref
| Expression |
1 | | simpl 473 |
. 2
  USGraph
Vtx     USGraph  |
2 | | ral0 4076 |
. . . . 5
        
    Edg   |
3 | | sneq 4187 |
. . . . . . . . 9
       |
4 | 3 | difeq2d 3728 |
. . . . . . . 8
               |
5 | | difid 3948 |
. . . . . . . 8
       |
6 | 4, 5 | syl6eq 2672 |
. . . . . . 7
         |
7 | | preq2 4269 |
. . . . . . . . . 10
         |
8 | 7 | preq1d 4274 |
. . . . . . . . 9
              
      |
9 | 8 | sseq1d 3632 |
. . . . . . . 8
           Edg      
    Edg     |
10 | 9 | reubidv 3126 |
. . . . . . 7
  
          
Edg    
        
Edg     |
11 | 6, 10 | raleqbidv 3152 |
. . . . . 6
  
                  
Edg              
Edg     |
12 | 11 | ralsng 4218 |
. . . . 5
  
             
         Edg 
        
    Edg     |
13 | 2, 12 | mpbiri 248 |
. . . 4
     
  
                Edg    |
14 | | snprc 4253 |
. . . . 5

 
  |
15 | | rzal 4073 |
. . . . 5
                 
         Edg    |
16 | 14, 15 | sylbi 207 |
. . . 4
               
         Edg    |
17 | 13, 16 | pm2.61i 176 |
. . 3
    
  
                Edg   |
18 | | id 22 |
. . . . 5
 Vtx    Vtx      |
19 | | difeq1 3721 |
. . . . . 6
 Vtx     Vtx             |
20 | | reueq1 3140 |
. . . . . 6
 Vtx      Vtx            Edg             
Edg     |
21 | 19, 20 | raleqbidv 3152 |
. . . . 5
 Vtx       Vtx       Vtx            Edg                     
Edg     |
22 | 18, 21 | raleqbidv 3152 |
. . . 4
 Vtx      Vtx   
 Vtx       Vtx            Edg 
    
  
                Edg     |
23 | 22 | adantl 482 |
. . 3
  USGraph
Vtx      
Vtx     Vtx 
     Vtx            Edg                
         Edg     |
24 | 17, 23 | mpbiri 248 |
. 2
  USGraph
Vtx      Vtx   
 Vtx       Vtx            Edg    |
25 | | eqid 2622 |
. . 3
Vtx  Vtx   |
26 | | eqid 2622 |
. . 3
Edg  Edg   |
27 | 25, 26 | frgrusgrfrcond 27123 |
. 2
 FriendGraph  USGraph 
Vtx     Vtx 
     Vtx            Edg     |
28 | 1, 24, 27 | sylanbrc 698 |
1
  USGraph
Vtx     FriendGraph  |