MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frnsuppeq Structured version   Visualization version   Unicode version

Theorem frnsuppeq 7307
Description: Two ways of writing the support of a function with known codomain. (Contributed by Stefan O'Rear, 9-Jul-2015.) (Revised by AV, 7-Jul-2019.)
Assertion
Ref Expression
frnsuppeq  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( F : I --> S  ->  ( F supp  Z )  =  ( `' F " ( S 
\  { Z }
) ) ) )

Proof of Theorem frnsuppeq
StepHypRef Expression
1 fex 6490 . . . . . . 7  |-  ( ( F : I --> S  /\  I  e.  V )  ->  F  e.  _V )
21expcom 451 . . . . . 6  |-  ( I  e.  V  ->  ( F : I --> S  ->  F  e.  _V )
)
32adantr 481 . . . . 5  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( F : I --> S  ->  F  e.  _V ) )
43imp 445 . . . 4  |-  ( ( ( I  e.  V  /\  Z  e.  W
)  /\  F :
I --> S )  ->  F  e.  _V )
5 simplr 792 . . . 4  |-  ( ( ( I  e.  V  /\  Z  e.  W
)  /\  F :
I --> S )  ->  Z  e.  W )
6 suppimacnv 7306 . . . 4  |-  ( ( F  e.  _V  /\  Z  e.  W )  ->  ( F supp  Z )  =  ( `' F " ( _V  \  { Z } ) ) )
74, 5, 6syl2anc 693 . . 3  |-  ( ( ( I  e.  V  /\  Z  e.  W
)  /\  F :
I --> S )  -> 
( F supp  Z )  =  ( `' F " ( _V  \  { Z } ) ) )
8 invdif 3868 . . . . . 6  |-  ( S  i^i  ( _V  \  { Z } ) )  =  ( S  \  { Z } )
98imaeq2i 5464 . . . . 5  |-  ( `' F " ( S  i^i  ( _V  \  { Z } ) ) )  =  ( `' F " ( S 
\  { Z }
) )
10 ffun 6048 . . . . . . 7  |-  ( F : I --> S  ->  Fun  F )
11 inpreima 6342 . . . . . . 7  |-  ( Fun 
F  ->  ( `' F " ( S  i^i  ( _V  \  { Z } ) ) )  =  ( ( `' F " S )  i^i  ( `' F " ( _V  \  { Z } ) ) ) )
1210, 11syl 17 . . . . . 6  |-  ( F : I --> S  -> 
( `' F "
( S  i^i  ( _V  \  { Z }
) ) )  =  ( ( `' F " S )  i^i  ( `' F " ( _V 
\  { Z }
) ) ) )
13 cnvimass 5485 . . . . . . . 8  |-  ( `' F " ( _V 
\  { Z }
) )  C_  dom  F
14 fdm 6051 . . . . . . . . 9  |-  ( F : I --> S  ->  dom  F  =  I )
15 fimacnv 6347 . . . . . . . . 9  |-  ( F : I --> S  -> 
( `' F " S )  =  I )
1614, 15eqtr4d 2659 . . . . . . . 8  |-  ( F : I --> S  ->  dom  F  =  ( `' F " S ) )
1713, 16syl5sseq 3653 . . . . . . 7  |-  ( F : I --> S  -> 
( `' F "
( _V  \  { Z } ) )  C_  ( `' F " S ) )
18 sseqin2 3817 . . . . . . 7  |-  ( ( `' F " ( _V 
\  { Z }
) )  C_  ( `' F " S )  <-> 
( ( `' F " S )  i^i  ( `' F " ( _V 
\  { Z }
) ) )  =  ( `' F "
( _V  \  { Z } ) ) )
1917, 18sylib 208 . . . . . 6  |-  ( F : I --> S  -> 
( ( `' F " S )  i^i  ( `' F " ( _V 
\  { Z }
) ) )  =  ( `' F "
( _V  \  { Z } ) ) )
2012, 19eqtrd 2656 . . . . 5  |-  ( F : I --> S  -> 
( `' F "
( S  i^i  ( _V  \  { Z }
) ) )  =  ( `' F "
( _V  \  { Z } ) ) )
219, 20syl5reqr 2671 . . . 4  |-  ( F : I --> S  -> 
( `' F "
( _V  \  { Z } ) )  =  ( `' F "
( S  \  { Z } ) ) )
2221adantl 482 . . 3  |-  ( ( ( I  e.  V  /\  Z  e.  W
)  /\  F :
I --> S )  -> 
( `' F "
( _V  \  { Z } ) )  =  ( `' F "
( S  \  { Z } ) ) )
237, 22eqtrd 2656 . 2  |-  ( ( ( I  e.  V  /\  Z  e.  W
)  /\  F :
I --> S )  -> 
( F supp  Z )  =  ( `' F " ( S  \  { Z } ) ) )
2423ex 450 1  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( F : I --> S  ->  ( F supp  Z )  =  ( `' F " ( S 
\  { Z }
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   {csn 4177   `'ccnv 5113   dom cdm 5114   "cima 5117   Fun wfun 5882   -->wf 5884  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  frnfsuppbi  8304  frnnn0supp  11349  ffs2  29503  eulerpartlemmf  30437  pwfi2f1o  37666
  Copyright terms: Public domain W3C validator