MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppimacnv Structured version   Visualization version   Unicode version

Theorem suppimacnv 7306
Description: Support sets of functions expressed by inverse images. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 7-Apr-2019.)
Assertion
Ref Expression
suppimacnv  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  ( R supp  Z )  =  ( `' R " ( _V  \  { Z } ) ) )

Proof of Theorem suppimacnv
Dummy variables  x  y  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . . . . . . 8  |-  ( t  =  s  ->  (
x R t  <->  x R
s ) )
21cbvexvw 1970 . . . . . . 7  |-  ( E. t  x R t  <->  E. s  x R
s )
3 breq2 4657 . . . . . . . . . . . . . 14  |-  ( s  =  Z  ->  (
x R s  <->  x R Z ) )
43anbi1d 741 . . . . . . . . . . . . 13  |-  ( s  =  Z  ->  (
( x R s  /\  ( x R t  <->  t  =/=  Z
) )  <->  ( x R Z  /\  (
x R t  <->  t  =/=  Z ) ) ) )
5 bianir 1009 . . . . . . . . . . . . . . . . . 18  |-  ( ( t  =/=  Z  /\  ( x R t  <-> 
t  =/=  Z ) )  ->  x R
t )
6 vex 3203 . . . . . . . . . . . . . . . . . . . 20  |-  t  e. 
_V
7 breq2 4657 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  t  ->  (
x R y  <->  x R
t ) )
8 neeq1 2856 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  t  ->  (
y  =/=  Z  <->  t  =/=  Z ) )
97, 8anbi12d 747 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  t  ->  (
( x R y  /\  y  =/=  Z
)  <->  ( x R t  /\  t  =/= 
Z ) ) )
106, 9spcev 3300 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x R t  /\  t  =/=  Z )  ->  E. y ( x R y  /\  y  =/= 
Z ) )
1110ex 450 . . . . . . . . . . . . . . . . . 18  |-  ( x R t  ->  (
t  =/=  Z  ->  E. y ( x R y  /\  y  =/= 
Z ) ) )
125, 11syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( t  =/=  Z  /\  ( x R t  <-> 
t  =/=  Z ) )  ->  ( t  =/=  Z  ->  E. y
( x R y  /\  y  =/=  Z
) ) )
1312ex 450 . . . . . . . . . . . . . . . 16  |-  ( t  =/=  Z  ->  (
( x R t  <-> 
t  =/=  Z )  ->  ( t  =/= 
Z  ->  E. y
( x R y  /\  y  =/=  Z
) ) ) )
1413pm2.43a 54 . . . . . . . . . . . . . . 15  |-  ( t  =/=  Z  ->  (
( x R t  <-> 
t  =/=  Z )  ->  E. y ( x R y  /\  y  =/=  Z ) ) )
1514adantld 483 . . . . . . . . . . . . . 14  |-  ( t  =/=  Z  ->  (
( x R Z  /\  ( x R t  <->  t  =/=  Z
) )  ->  E. y
( x R y  /\  y  =/=  Z
) ) )
16 nne 2798 . . . . . . . . . . . . . . . 16  |-  ( -.  t  =/=  Z  <->  t  =  Z )
17 notbi 309 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x R t  <->  t  =/=  Z )  <->  ( -.  x R t  <->  -.  t  =/=  Z ) )
18 bianir 1009 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( -.  t  =/=  Z  /\  ( -.  x R t  <->  -.  t  =/=  Z ) )  ->  -.  x R t )
19 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( Z  =  t  ->  (
x R Z  <->  x R
t ) )
2019eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  Z  ->  (
x R Z  <->  x R
t ) )
21 pm2.24 121 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x R t  ->  ( -.  x R t  ->  E. y ( x R y  /\  y  =/= 
Z ) ) )
2220, 21syl6bi 243 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  Z  ->  (
x R Z  -> 
( -.  x R t  ->  E. y
( x R y  /\  y  =/=  Z
) ) ) )
2322com13 88 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  x R t  -> 
( x R Z  ->  ( t  =  Z  ->  E. y
( x R y  /\  y  =/=  Z
) ) ) )
2418, 23syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( -.  t  =/=  Z  /\  ( -.  x R t  <->  -.  t  =/=  Z ) )  ->  (
x R Z  -> 
( t  =  Z  ->  E. y ( x R y  /\  y  =/=  Z ) ) ) )
2524ex 450 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  t  =/=  Z  -> 
( ( -.  x R t  <->  -.  t  =/=  Z )  ->  (
x R Z  -> 
( t  =  Z  ->  E. y ( x R y  /\  y  =/=  Z ) ) ) ) )
2617, 25syl5bi 232 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  t  =/=  Z  -> 
( ( x R t  <->  t  =/=  Z
)  ->  ( x R Z  ->  ( t  =  Z  ->  E. y
( x R y  /\  y  =/=  Z
) ) ) ) )
2726com13 88 . . . . . . . . . . . . . . . . . 18  |-  ( x R Z  ->  (
( x R t  <-> 
t  =/=  Z )  ->  ( -.  t  =/=  Z  ->  ( t  =  Z  ->  E. y
( x R y  /\  y  =/=  Z
) ) ) ) )
2827imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( x R Z  /\  ( x R t  <-> 
t  =/=  Z ) )  ->  ( -.  t  =/=  Z  ->  (
t  =  Z  ->  E. y ( x R y  /\  y  =/= 
Z ) ) ) )
2928com13 88 . . . . . . . . . . . . . . . 16  |-  ( t  =  Z  ->  ( -.  t  =/=  Z  ->  ( ( x R Z  /\  ( x R t  <->  t  =/=  Z ) )  ->  E. y
( x R y  /\  y  =/=  Z
) ) ) )
3016, 29sylbi 207 . . . . . . . . . . . . . . 15  |-  ( -.  t  =/=  Z  -> 
( -.  t  =/= 
Z  ->  ( (
x R Z  /\  ( x R t  <-> 
t  =/=  Z ) )  ->  E. y
( x R y  /\  y  =/=  Z
) ) ) )
3130pm2.43i 52 . . . . . . . . . . . . . 14  |-  ( -.  t  =/=  Z  -> 
( ( x R Z  /\  ( x R t  <->  t  =/=  Z ) )  ->  E. y
( x R y  /\  y  =/=  Z
) ) )
3215, 31pm2.61i 176 . . . . . . . . . . . . 13  |-  ( ( x R Z  /\  ( x R t  <-> 
t  =/=  Z ) )  ->  E. y
( x R y  /\  y  =/=  Z
) )
334, 32syl6bi 243 . . . . . . . . . . . 12  |-  ( s  =  Z  ->  (
( x R s  /\  ( x R t  <->  t  =/=  Z
) )  ->  E. y
( x R y  /\  y  =/=  Z
) ) )
34 vex 3203 . . . . . . . . . . . . . . . 16  |-  s  e. 
_V
35 breq2 4657 . . . . . . . . . . . . . . . . 17  |-  ( y  =  s  ->  (
x R y  <->  x R
s ) )
36 neeq1 2856 . . . . . . . . . . . . . . . . 17  |-  ( y  =  s  ->  (
y  =/=  Z  <->  s  =/=  Z ) )
3735, 36anbi12d 747 . . . . . . . . . . . . . . . 16  |-  ( y  =  s  ->  (
( x R y  /\  y  =/=  Z
)  <->  ( x R s  /\  s  =/= 
Z ) ) )
3834, 37spcev 3300 . . . . . . . . . . . . . . 15  |-  ( ( x R s  /\  s  =/=  Z )  ->  E. y ( x R y  /\  y  =/= 
Z ) )
3938ex 450 . . . . . . . . . . . . . 14  |-  ( x R s  ->  (
s  =/=  Z  ->  E. y ( x R y  /\  y  =/= 
Z ) ) )
4039adantr 481 . . . . . . . . . . . . 13  |-  ( ( x R s  /\  ( x R t  <-> 
t  =/=  Z ) )  ->  ( s  =/=  Z  ->  E. y
( x R y  /\  y  =/=  Z
) ) )
4140com12 32 . . . . . . . . . . . 12  |-  ( s  =/=  Z  ->  (
( x R s  /\  ( x R t  <->  t  =/=  Z
) )  ->  E. y
( x R y  /\  y  =/=  Z
) ) )
4233, 41pm2.61ine 2877 . . . . . . . . . . 11  |-  ( ( x R s  /\  ( x R t  <-> 
t  =/=  Z ) )  ->  E. y
( x R y  /\  y  =/=  Z
) )
4342expcom 451 . . . . . . . . . 10  |-  ( ( x R t  <->  t  =/=  Z )  ->  ( x R s  ->  E. y
( x R y  /\  y  =/=  Z
) ) )
4443exlimiv 1858 . . . . . . . . 9  |-  ( E. t ( x R t  <->  t  =/=  Z
)  ->  ( x R s  ->  E. y
( x R y  /\  y  =/=  Z
) ) )
4544com12 32 . . . . . . . 8  |-  ( x R s  ->  ( E. t ( x R t  <->  t  =/=  Z
)  ->  E. y
( x R y  /\  y  =/=  Z
) ) )
4645exlimiv 1858 . . . . . . 7  |-  ( E. s  x R s  ->  ( E. t
( x R t  <-> 
t  =/=  Z )  ->  E. y ( x R y  /\  y  =/=  Z ) ) )
472, 46sylbi 207 . . . . . 6  |-  ( E. t  x R t  ->  ( E. t
( x R t  <-> 
t  =/=  Z )  ->  E. y ( x R y  /\  y  =/=  Z ) ) )
4847imp 445 . . . . 5  |-  ( ( E. t  x R t  /\  E. t
( x R t  <-> 
t  =/=  Z ) )  ->  E. y
( x R y  /\  y  =/=  Z
) )
4948a1i 11 . . . 4  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  ( ( E. t  x R t  /\  E. t ( x R t  <->  t  =/=  Z
) )  ->  E. y
( x R y  /\  y  =/=  Z
) ) )
5049ss2abdv 3675 . . 3  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  { x  |  ( E. t  x R t  /\  E. t
( x R t  <-> 
t  =/=  Z ) ) }  C_  { x  |  E. y ( x R y  /\  y  =/=  Z ) } )
51 suppvalbr 7299 . . 3  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  ( R supp  Z )  =  { x  |  ( E. t  x R t  /\  E. t ( x R t  <->  t  =/=  Z
) ) } )
52 cnvimadfsn 7304 . . . 4  |-  ( `' R " ( _V 
\  { Z }
) )  =  {
x  |  E. y
( x R y  /\  y  =/=  Z
) }
5352a1i 11 . . 3  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  ( `' R "
( _V  \  { Z } ) )  =  { x  |  E. y ( x R y  /\  y  =/= 
Z ) } )
5450, 51, 533sstr4d 3648 . 2  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  ( R supp  Z ) 
C_  ( `' R " ( _V  \  { Z } ) ) )
55 suppimacnvss 7305 . 2  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  ( `' R "
( _V  \  { Z } ) )  C_  ( R supp  Z )
)
5654, 55eqssd 3620 1  |-  ( ( R  e.  V  /\  Z  e.  W )  ->  ( R supp  Z )  =  ( `' R " ( _V  \  { Z } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   _Vcvv 3200    \ cdif 3571   {csn 4177   class class class wbr 4653   `'ccnv 5113   "cima 5117  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  frnsuppeq  7307  suppun  7315  mptsuppdifd  7317  supp0cosupp0  7334  imacosupp  7335  fdmfisuppfi  8284  fsuppun  8294  fsuppco  8307  gsumval3a  18304  gsumzf1o  18313  gsumzaddlem  18321  gsumzmhm  18337  gsumzoppg  18344  deg1val  23856  suppss3  29502  ffsrn  29504  fpwrelmapffslem  29507  sitgclg  30404  eulerpartlemmf  30437  eulerpartlemgf  30441  fidmfisupp  39390
  Copyright terms: Public domain W3C validator