Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemmf Structured version   Visualization version   Unicode version

Theorem eulerpartlemmf 30437
Description: Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 30-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
eulerpart.o  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
eulerpart.d  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
eulerpart.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
eulerpart.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
eulerpart.h  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
eulerpart.m  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
eulerpart.r  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
eulerpart.t  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
eulerpart.g  |-  G  =  ( o  e.  ( T  i^i  R ) 
|->  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) )
Assertion
Ref Expression
eulerpartlemmf  |-  ( A  e.  ( T  i^i  R )  ->  (bits  o.  ( A  |`  J ) )  e.  H )
Distinct variable groups:    f, k, n, x, y, z    f,
o, r, A    o, F    H, r    f, J   
n, o, r, J, x, y    o, M   
f, N    g, n, P    R, o    T, o
Allowed substitution hints:    A( x, y, z, g, k, n)    D( x, y, z, f, g, k, n, o, r)    P( x, y, z, f, k, o, r)    R( x, y, z, f, g, k, n, r)    T( x, y, z, f, g, k, n, r)    F( x, y, z, f, g, k, n, r)    G( x, y, z, f, g, k, n, o, r)    H( x, y, z, f, g, k, n, o)    J( z, g, k)    M( x, y, z, f, g, k, n, r)    N( x, y, z, g, k, n, o, r)    O( x, y, z, f, g, k, n, o, r)

Proof of Theorem eulerpartlemmf
StepHypRef Expression
1 bitsf1o 15167 . . . . 5  |-  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )
2 f1of 6137 . . . . 5  |-  ( (bits  |`  NN0 ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin )  ->  (bits  |`  NN0 ) : NN0 --> ( ~P NN0  i^i 
Fin ) )
31, 2ax-mp 5 . . . 4  |-  (bits  |`  NN0 ) : NN0 --> ( ~P NN0  i^i 
Fin )
4 eulerpart.p . . . . . . . . 9  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
5 eulerpart.o . . . . . . . . 9  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
6 eulerpart.d . . . . . . . . 9  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
7 eulerpart.j . . . . . . . . 9  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
8 eulerpart.f . . . . . . . . 9  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
9 eulerpart.h . . . . . . . . 9  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
10 eulerpart.m . . . . . . . . 9  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
11 eulerpart.r . . . . . . . . 9  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
12 eulerpart.t . . . . . . . . 9  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
134, 5, 6, 7, 8, 9, 10, 11, 12eulerpartlemt0 30431 . . . . . . . 8  |-  ( A  e.  ( T  i^i  R )  <->  ( A  e.  ( NN0  ^m  NN )  /\  ( `' A " NN )  e.  Fin  /\  ( `' A " NN )  C_  J ) )
1413biimpi 206 . . . . . . 7  |-  ( A  e.  ( T  i^i  R )  ->  ( A  e.  ( NN0  ^m  NN )  /\  ( `' A " NN )  e.  Fin  /\  ( `' A " NN )  C_  J ) )
1514simp1d 1073 . . . . . 6  |-  ( A  e.  ( T  i^i  R )  ->  A  e.  ( NN0  ^m  NN ) )
16 nn0ex 11298 . . . . . . 7  |-  NN0  e.  _V
17 nnex 11026 . . . . . . 7  |-  NN  e.  _V
1816, 17elmap 7886 . . . . . 6  |-  ( A  e.  ( NN0  ^m  NN )  <->  A : NN --> NN0 )
1915, 18sylib 208 . . . . 5  |-  ( A  e.  ( T  i^i  R )  ->  A : NN
--> NN0 )
20 ssrab2 3687 . . . . . 6  |-  { z  e.  NN  |  -.  2  ||  z }  C_  NN
217, 20eqsstri 3635 . . . . 5  |-  J  C_  NN
22 fssres 6070 . . . . 5  |-  ( ( A : NN --> NN0  /\  J  C_  NN )  -> 
( A  |`  J ) : J --> NN0 )
2319, 21, 22sylancl 694 . . . 4  |-  ( A  e.  ( T  i^i  R )  ->  ( A  |`  J ) : J --> NN0 )
24 fco2 6059 . . . 4  |-  ( ( (bits  |`  NN0 ) : NN0 --> ( ~P NN0  i^i 
Fin )  /\  ( A  |`  J ) : J --> NN0 )  ->  (bits  o.  ( A  |`  J ) ) : J --> ( ~P
NN0  i^i  Fin )
)
253, 23, 24sylancr 695 . . 3  |-  ( A  e.  ( T  i^i  R )  ->  (bits  o.  ( A  |`  J ) ) : J --> ( ~P
NN0  i^i  Fin )
)
2616pwex 4848 . . . . 5  |-  ~P NN0  e.  _V
2726inex1 4799 . . . 4  |-  ( ~P
NN0  i^i  Fin )  e.  _V
2817, 21ssexi 4803 . . . 4  |-  J  e. 
_V
2927, 28elmap 7886 . . 3  |-  ( (bits 
o.  ( A  |`  J ) )  e.  ( ( ~P NN0  i^i 
Fin )  ^m  J
)  <->  (bits  o.  ( A  |`  J ) ) : J --> ( ~P
NN0  i^i  Fin )
)
3025, 29sylibr 224 . 2  |-  ( A  e.  ( T  i^i  R )  ->  (bits  o.  ( A  |`  J ) )  e.  ( ( ~P NN0  i^i  Fin )  ^m  J ) )
3114simp2d 1074 . . . . 5  |-  ( A  e.  ( T  i^i  R )  ->  ( `' A " NN )  e. 
Fin )
32 0nn0 11307 . . . . . . . . 9  |-  0  e.  NN0
33 suppimacnv 7306 . . . . . . . . 9  |-  ( ( A  e.  ( T  i^i  R )  /\  0  e.  NN0 )  -> 
( A supp  0 )  =  ( `' A " ( _V  \  {
0 } ) ) )
3432, 33mpan2 707 . . . . . . . 8  |-  ( A  e.  ( T  i^i  R )  ->  ( A supp  0 )  =  ( `' A " ( _V 
\  { 0 } ) ) )
35 frnsuppeq 7307 . . . . . . . . . 10  |-  ( ( NN  e.  _V  /\  0  e.  NN0 )  -> 
( A : NN --> NN0  ->  ( A supp  0
)  =  ( `' A " ( NN0  \  { 0 } ) ) ) )
3617, 32, 35mp2an 708 . . . . . . . . 9  |-  ( A : NN --> NN0  ->  ( A supp  0 )  =  ( `' A "
( NN0  \  { 0 } ) ) )
3719, 36syl 17 . . . . . . . 8  |-  ( A  e.  ( T  i^i  R )  ->  ( A supp  0 )  =  ( `' A " ( NN0  \  { 0 } ) ) )
3834, 37eqtr3d 2658 . . . . . . 7  |-  ( A  e.  ( T  i^i  R )  ->  ( `' A " ( _V  \  { 0 } ) )  =  ( `' A " ( NN0  \  { 0 } ) ) )
3938eleq1d 2686 . . . . . 6  |-  ( A  e.  ( T  i^i  R )  ->  ( ( `' A " ( _V 
\  { 0 } ) )  e.  Fin  <->  ( `' A " ( NN0  \  { 0 } ) )  e.  Fin )
)
40 dfn2 11305 . . . . . . . 8  |-  NN  =  ( NN0  \  { 0 } )
4140imaeq2i 5464 . . . . . . 7  |-  ( `' A " NN )  =  ( `' A " ( NN0  \  {
0 } ) )
4241eleq1i 2692 . . . . . 6  |-  ( ( `' A " NN )  e.  Fin  <->  ( `' A " ( NN0  \  {
0 } ) )  e.  Fin )
4339, 42syl6bbr 278 . . . . 5  |-  ( A  e.  ( T  i^i  R )  ->  ( ( `' A " ( _V 
\  { 0 } ) )  e.  Fin  <->  ( `' A " NN )  e.  Fin ) )
4431, 43mpbird 247 . . . 4  |-  ( A  e.  ( T  i^i  R )  ->  ( `' A " ( _V  \  { 0 } ) )  e.  Fin )
45 resss 5422 . . . . 5  |-  ( A  |`  J )  C_  A
46 cnvss 5294 . . . . 5  |-  ( ( A  |`  J )  C_  A  ->  `' ( A  |`  J )  C_  `' A )
47 imass1 5500 . . . . 5  |-  ( `' ( A  |`  J ) 
C_  `' A  -> 
( `' ( A  |`  J ) " ( _V  \  { 0 } ) )  C_  ( `' A " ( _V 
\  { 0 } ) ) )
4845, 46, 47mp2b 10 . . . 4  |-  ( `' ( A  |`  J )
" ( _V  \  { 0 } ) )  C_  ( `' A " ( _V  \  { 0 } ) )
49 ssfi 8180 . . . 4  |-  ( ( ( `' A "
( _V  \  {
0 } ) )  e.  Fin  /\  ( `' ( A  |`  J ) " ( _V  \  { 0 } ) )  C_  ( `' A " ( _V 
\  { 0 } ) ) )  -> 
( `' ( A  |`  J ) " ( _V  \  { 0 } ) )  e.  Fin )
5044, 48, 49sylancl 694 . . 3  |-  ( A  e.  ( T  i^i  R )  ->  ( `' ( A  |`  J )
" ( _V  \  { 0 } ) )  e.  Fin )
51 cnvco 5308 . . . . . 6  |-  `' (bits 
o.  ( A  |`  J ) )  =  ( `' ( A  |`  J )  o.  `'bits )
5251imaeq1i 5463 . . . . 5  |-  ( `' (bits  o.  ( A  |`  J ) ) "
( _V  \  { (/)
} ) )  =  ( ( `' ( A  |`  J )  o.  `'bits ) " ( _V 
\  { (/) } ) )
53 imaco 5640 . . . . 5  |-  ( ( `' ( A  |`  J )  o.  `'bits ) " ( _V  \  { (/) } ) )  =  ( `' ( A  |`  J ) " ( `'bits " ( _V  \  { (/) } ) ) )
5452, 53eqtri 2644 . . . 4  |-  ( `' (bits  o.  ( A  |`  J ) ) "
( _V  \  { (/)
} ) )  =  ( `' ( A  |`  J ) " ( `'bits " ( _V  \  { (/) } ) ) )
55 ffun 6048 . . . . . 6  |-  ( A : NN --> NN0  ->  Fun 
A )
56 funres 5929 . . . . . 6  |-  ( Fun 
A  ->  Fun  ( A  |`  J ) )
5719, 55, 563syl 18 . . . . 5  |-  ( A  e.  ( T  i^i  R )  ->  Fun  ( A  |`  J ) )
58 ssv 3625 . . . . . . 7  |-  ( `'bits " _V )  C_  _V
59 ssdif 3745 . . . . . . 7  |-  ( ( `'bits " _V )  C_  _V  ->  ( ( `'bits " _V )  \  ( `'bits " { (/) } ) )  C_  ( _V  \  ( `'bits " { (/)
} ) ) )
6058, 59ax-mp 5 . . . . . 6  |-  ( ( `'bits " _V )  \ 
( `'bits " { (/) } ) )  C_  ( _V  \  ( `'bits " { (/)
} ) )
61 bitsf 15149 . . . . . . 7  |- bits : ZZ --> ~P NN0
62 ffun 6048 . . . . . . 7  |-  (bits : ZZ
--> ~P NN0  ->  Fun bits )
63 difpreima 6343 . . . . . . 7  |-  ( Fun bits  ->  ( `'bits " ( _V  \  { (/) } ) )  =  ( ( `'bits " _V )  \ 
( `'bits " { (/) } ) ) )
6461, 62, 63mp2b 10 . . . . . 6  |-  ( `'bits " ( _V  \  { (/) } ) )  =  ( ( `'bits " _V )  \  ( `'bits " { (/) } ) )
65 bitsf1 15168 . . . . . . . . 9  |- bits : ZZ -1-1-> ~P
NN0
66 0z 11388 . . . . . . . . . 10  |-  0  e.  ZZ
67 snssi 4339 . . . . . . . . . 10  |-  ( 0  e.  ZZ  ->  { 0 }  C_  ZZ )
6866, 67ax-mp 5 . . . . . . . . 9  |-  { 0 }  C_  ZZ
69 f1imacnv 6153 . . . . . . . . 9  |-  ( (bits
: ZZ -1-1-> ~P NN0  /\ 
{ 0 }  C_  ZZ )  ->  ( `'bits " (bits " { 0 } ) )  =  {
0 } )
7065, 68, 69mp2an 708 . . . . . . . 8  |-  ( `'bits " (bits " { 0 } ) )  =  {
0 }
71 ffn 6045 . . . . . . . . . . . 12  |-  (bits : ZZ
--> ~P NN0  -> bits  Fn  ZZ )
7261, 71ax-mp 5 . . . . . . . . . . 11  |- bits  Fn  ZZ
73 fnsnfv 6258 . . . . . . . . . . 11  |-  ( (bits 
Fn  ZZ  /\  0  e.  ZZ )  ->  { (bits `  0 ) }  =  (bits " {
0 } ) )
7472, 66, 73mp2an 708 . . . . . . . . . 10  |-  { (bits `  0 ) }  =  (bits " {
0 } )
75 0bits 15161 . . . . . . . . . . 11  |-  (bits ` 
0 )  =  (/)
7675sneqi 4188 . . . . . . . . . 10  |-  { (bits `  0 ) }  =  { (/) }
7774, 76eqtr3i 2646 . . . . . . . . 9  |-  (bits " { 0 } )  =  { (/) }
7877imaeq2i 5464 . . . . . . . 8  |-  ( `'bits " (bits " { 0 } ) )  =  ( `'bits " { (/) } )
7970, 78eqtr3i 2646 . . . . . . 7  |-  { 0 }  =  ( `'bits " { (/) } )
8079difeq2i 3725 . . . . . 6  |-  ( _V 
\  { 0 } )  =  ( _V 
\  ( `'bits " { (/)
} ) )
8160, 64, 803sstr4i 3644 . . . . 5  |-  ( `'bits " ( _V  \  { (/) } ) ) 
C_  ( _V  \  { 0 } )
82 sspreima 29447 . . . . 5  |-  ( ( Fun  ( A  |`  J )  /\  ( `'bits " ( _V  \  { (/) } ) ) 
C_  ( _V  \  { 0 } ) )  ->  ( `' ( A  |`  J )
" ( `'bits " ( _V  \  { (/) } ) ) )  C_  ( `' ( A  |`  J ) " ( _V  \  { 0 } ) ) )
8357, 81, 82sylancl 694 . . . 4  |-  ( A  e.  ( T  i^i  R )  ->  ( `' ( A  |`  J )
" ( `'bits " ( _V  \  { (/) } ) ) )  C_  ( `' ( A  |`  J ) " ( _V  \  { 0 } ) ) )
8454, 83syl5eqss 3649 . . 3  |-  ( A  e.  ( T  i^i  R )  ->  ( `' (bits  o.  ( A  |`  J ) ) "
( _V  \  { (/)
} ) )  C_  ( `' ( A  |`  J ) " ( _V  \  { 0 } ) ) )
85 ssfi 8180 . . 3  |-  ( ( ( `' ( A  |`  J ) " ( _V  \  { 0 } ) )  e.  Fin  /\  ( `' (bits  o.  ( A  |`  J ) ) " ( _V 
\  { (/) } ) )  C_  ( `' ( A  |`  J )
" ( _V  \  { 0 } ) ) )  ->  ( `' (bits  o.  ( A  |`  J ) )
" ( _V  \  { (/) } ) )  e.  Fin )
8650, 84, 85syl2anc 693 . 2  |-  ( A  e.  ( T  i^i  R )  ->  ( `' (bits  o.  ( A  |`  J ) ) "
( _V  \  { (/)
} ) )  e. 
Fin )
87 oveq1 6657 . . . . 5  |-  ( r  =  (bits  o.  ( A  |`  J ) )  ->  ( r supp  (/) )  =  ( (bits  o.  ( A  |`  J ) ) supp  (/) ) )
8887eleq1d 2686 . . . 4  |-  ( r  =  (bits  o.  ( A  |`  J ) )  ->  ( ( r supp  (/) )  e.  Fin  <->  (
(bits  o.  ( A  |`  J ) ) supp  (/) )  e. 
Fin ) )
8988, 9elrab2 3366 . . 3  |-  ( (bits 
o.  ( A  |`  J ) )  e.  H  <->  ( (bits  o.  ( A  |`  J ) )  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  /\  ( (bits  o.  ( A  |`  J ) ) supp  (/) )  e.  Fin ) )
90 zex 11386 . . . . . 6  |-  ZZ  e.  _V
91 fex 6490 . . . . . 6  |-  ( (bits
: ZZ --> ~P NN0  /\  ZZ  e.  _V )  -> bits  e.  _V )
9261, 90, 91mp2an 708 . . . . 5  |- bits  e.  _V
93 resexg 5442 . . . . 5  |-  ( A  e.  ( T  i^i  R )  ->  ( A  |`  J )  e.  _V )
94 coexg 7117 . . . . 5  |-  ( (bits 
e.  _V  /\  ( A  |`  J )  e. 
_V )  ->  (bits  o.  ( A  |`  J ) )  e.  _V )
9592, 93, 94sylancr 695 . . . 4  |-  ( A  e.  ( T  i^i  R )  ->  (bits  o.  ( A  |`  J ) )  e.  _V )
96 0ex 4790 . . . . . . 7  |-  (/)  e.  _V
97 suppimacnv 7306 . . . . . . 7  |-  ( ( (bits  o.  ( A  |`  J ) )  e. 
_V  /\  (/)  e.  _V )  ->  ( (bits  o.  ( A  |`  J ) ) supp  (/) )  =  ( `' (bits  o.  ( A  |`  J ) )
" ( _V  \  { (/) } ) ) )
9896, 97mpan2 707 . . . . . 6  |-  ( (bits 
o.  ( A  |`  J ) )  e. 
_V  ->  ( (bits  o.  ( A  |`  J ) ) supp  (/) )  =  ( `' (bits  o.  ( A  |`  J ) )
" ( _V  \  { (/) } ) ) )
9998eleq1d 2686 . . . . 5  |-  ( (bits 
o.  ( A  |`  J ) )  e. 
_V  ->  ( ( (bits 
o.  ( A  |`  J ) ) supp  (/) )  e. 
Fin 
<->  ( `' (bits  o.  ( A  |`  J ) ) " ( _V 
\  { (/) } ) )  e.  Fin )
)
10099anbi2d 740 . . . 4  |-  ( (bits 
o.  ( A  |`  J ) )  e. 
_V  ->  ( ( (bits 
o.  ( A  |`  J ) )  e.  ( ( ~P NN0  i^i 
Fin )  ^m  J
)  /\  ( (bits  o.  ( A  |`  J ) ) supp  (/) )  e.  Fin ) 
<->  ( (bits  o.  ( A  |`  J ) )  e.  ( ( ~P
NN0  i^i  Fin )  ^m  J )  /\  ( `' (bits  o.  ( A  |`  J ) )
" ( _V  \  { (/) } ) )  e.  Fin ) ) )
10195, 100syl 17 . . 3  |-  ( A  e.  ( T  i^i  R )  ->  ( (
(bits  o.  ( A  |`  J ) )  e.  ( ( ~P NN0  i^i 
Fin )  ^m  J
)  /\  ( (bits  o.  ( A  |`  J ) ) supp  (/) )  e.  Fin ) 
<->  ( (bits  o.  ( A  |`  J ) )  e.  ( ( ~P
NN0  i^i  Fin )  ^m  J )  /\  ( `' (bits  o.  ( A  |`  J ) )
" ( _V  \  { (/) } ) )  e.  Fin ) ) )
10289, 101syl5bb 272 . 2  |-  ( A  e.  ( T  i^i  R )  ->  ( (bits  o.  ( A  |`  J ) )  e.  H  <->  ( (bits  o.  ( A  |`  J ) )  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  /\  ( `' (bits  o.  ( A  |`  J ) )
" ( _V  \  { (/) } ) )  e.  Fin ) ) )
10330, 86, 102mpbir2and 957 1  |-  ( A  e.  ( T  i^i  R )  ->  (bits  o.  ( A  |`  J ) )  e.  H )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653   {copab 4712    |-> cmpt 4729   `'ccnv 5113    |` cres 5116   "cima 5117    o. ccom 5118   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   supp csupp 7295    ^m cmap 7857   Fincfn 7955   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ^cexp 12860   sum_csu 14416    || cdvds 14983  bitscbits 15141  𝟭cind 30072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-bits 15144
This theorem is referenced by:  eulerpartlemgvv  30438  eulerpartlemgf  30441
  Copyright terms: Public domain W3C validator