| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftpg | Structured version Visualization version Unicode version | ||
| Description: A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| ftpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1058 |
. . . 4
| |
| 2 | 3simpa 1058 |
. . . 4
| |
| 3 | simp1 1061 |
. . . 4
| |
| 4 | fprg 6422 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | syl3an 1368 |
. . 3
|
| 6 | eqidd 2623 |
. . . 4
| |
| 7 | simp3 1063 |
. . . . . . 7
| |
| 8 | simp3 1063 |
. . . . . . 7
| |
| 9 | 7, 8 | anim12i 590 |
. . . . . 6
|
| 10 | 9 | 3adant3 1081 |
. . . . 5
|
| 11 | fsng 6404 |
. . . . 5
| |
| 12 | 10, 11 | syl 17 |
. . . 4
|
| 13 | 6, 12 | mpbird 247 |
. . 3
|
| 14 | elpri 4197 |
. . . . . . . 8
| |
| 15 | eqcom 2629 |
. . . . . . . . . . 11
| |
| 16 | nne 2798 |
. . . . . . . . . . 11
| |
| 17 | 15, 16 | bitr4i 267 |
. . . . . . . . . 10
|
| 18 | eqcom 2629 |
. . . . . . . . . . 11
| |
| 19 | nne 2798 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | bitr4i 267 |
. . . . . . . . . 10
|
| 21 | 17, 20 | orbi12i 543 |
. . . . . . . . 9
|
| 22 | ianor 509 |
. . . . . . . . 9
| |
| 23 | 21, 22 | sylbb2 228 |
. . . . . . . 8
|
| 24 | 14, 23 | syl 17 |
. . . . . . 7
|
| 25 | 24 | con2i 134 |
. . . . . 6
|
| 26 | 25 | 3adant1 1079 |
. . . . 5
|
| 27 | 26 | 3ad2ant3 1084 |
. . . 4
|
| 28 | disjsn 4246 |
. . . 4
| |
| 29 | 27, 28 | sylibr 224 |
. . 3
|
| 30 | fun 6066 |
. . 3
| |
| 31 | 5, 13, 29, 30 | syl21anc 1325 |
. 2
|
| 32 | df-tp 4182 |
. . . 4
| |
| 33 | 32 | feq1i 6036 |
. . 3
|
| 34 | df-tp 4182 |
. . . 4
| |
| 35 | df-tp 4182 |
. . . 4
| |
| 36 | 34, 35 | feq23i 6039 |
. . 3
|
| 37 | 33, 36 | bitri 264 |
. 2
|
| 38 | 31, 37 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 |
| This theorem is referenced by: ftp 6424 |
| Copyright terms: Public domain | W3C validator |