| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprg | Structured version Visualization version Unicode version | ||
| Description: A function with a domain of two elements. (Contributed by FL, 2-Feb-2014.) |
| Ref | Expression |
|---|---|
| fprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. . . 4
| |
| 2 | elex 3212 |
. . . 4
| |
| 3 | 1, 2 | anim12i 590 |
. . 3
|
| 4 | elex 3212 |
. . . 4
| |
| 5 | elex 3212 |
. . . 4
| |
| 6 | 4, 5 | anim12i 590 |
. . 3
|
| 7 | neeq1 2856 |
. . . . 5
| |
| 8 | opeq1 4402 |
. . . . . . 7
| |
| 9 | 8 | preq1d 4274 |
. . . . . 6
|
| 10 | preq1 4268 |
. . . . . 6
| |
| 11 | 9, 10 | feq12d 6033 |
. . . . 5
|
| 12 | 7, 11 | imbi12d 334 |
. . . 4
|
| 13 | neeq2 2857 |
. . . . 5
| |
| 14 | opeq1 4402 |
. . . . . . 7
| |
| 15 | 14 | preq2d 4275 |
. . . . . 6
|
| 16 | preq2 4269 |
. . . . . 6
| |
| 17 | 15, 16 | feq12d 6033 |
. . . . 5
|
| 18 | 13, 17 | imbi12d 334 |
. . . 4
|
| 19 | opeq2 4403 |
. . . . . . 7
| |
| 20 | 19 | preq1d 4274 |
. . . . . 6
|
| 21 | eqidd 2623 |
. . . . . 6
| |
| 22 | preq1 4268 |
. . . . . 6
| |
| 23 | 20, 21, 22 | feq123d 6034 |
. . . . 5
|
| 24 | 23 | imbi2d 330 |
. . . 4
|
| 25 | opeq2 4403 |
. . . . . . 7
| |
| 26 | 25 | preq2d 4275 |
. . . . . 6
|
| 27 | eqidd 2623 |
. . . . . 6
| |
| 28 | preq2 4269 |
. . . . . 6
| |
| 29 | 26, 27, 28 | feq123d 6034 |
. . . . 5
|
| 30 | 29 | imbi2d 330 |
. . . 4
|
| 31 | 0ex 4790 |
. . . . . 6
| |
| 32 | 31 | elimel 4150 |
. . . . 5
|
| 33 | 31 | elimel 4150 |
. . . . 5
|
| 34 | 31 | elimel 4150 |
. . . . 5
|
| 35 | 31 | elimel 4150 |
. . . . 5
|
| 36 | 32, 33, 34, 35 | fpr 6421 |
. . . 4
|
| 37 | 12, 18, 24, 30, 36 | dedth4h 4142 |
. . 3
|
| 38 | 3, 6, 37 | syl2an 494 |
. 2
|
| 39 | 38 | 3impia 1261 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 df-fn 5891 df-f 5892 |
| This theorem is referenced by: ftpg 6423 fpropnf1 6524 wrdlen2i 13686 umgr2v2e 26421 mapprop 42124 zlmodzxzel 42133 ldepspr 42262 zlmodzxzldeplem1 42289 |
| Copyright terms: Public domain | W3C validator |