MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv Structured version   Visualization version   Unicode version

Theorem funcnv 5958
Description: The converse of a class is a function iff the class is single-rooted, which means that for any  y in the range of  A there is at most one  x such that  x A
y. Definition of single-rooted in [Enderton] p. 43. See funcnv2 5957 for a simpler version. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funcnv  |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
Distinct variable group:    x, y, A

Proof of Theorem funcnv
StepHypRef Expression
1 vex 3203 . . . . . . 7  |-  x  e. 
_V
2 vex 3203 . . . . . . 7  |-  y  e. 
_V
31, 2brelrn 5356 . . . . . 6  |-  ( x A y  ->  y  e.  ran  A )
43pm4.71ri 665 . . . . 5  |-  ( x A y  <->  ( y  e.  ran  A  /\  x A y ) )
54mobii 2493 . . . 4  |-  ( E* x  x A y  <->  E* x ( y  e. 
ran  A  /\  x A y ) )
6 moanimv 2531 . . . 4  |-  ( E* x ( y  e. 
ran  A  /\  x A y )  <->  ( y  e.  ran  A  ->  E* x  x A y ) )
75, 6bitri 264 . . 3  |-  ( E* x  x A y  <-> 
( y  e.  ran  A  ->  E* x  x A y ) )
87albii 1747 . 2  |-  ( A. y E* x  x A y  <->  A. y ( y  e.  ran  A  ->  E* x  x A
y ) )
9 funcnv2 5957 . 2  |-  ( Fun  `' A  <->  A. y E* x  x A y )
10 df-ral 2917 . 2  |-  ( A. y  e.  ran  A E* x  x A y  <->  A. y
( y  e.  ran  A  ->  E* x  x A y ) )
118, 9, 103bitr4i 292 1  |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990   E*wmo 2471   A.wral 2912   class class class wbr 4653   `'ccnv 5113   ran crn 5115   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890
This theorem is referenced by:  funcnv3  5959  fncnv  5962
  Copyright terms: Public domain W3C validator