MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem5 Structured version   Visualization version   Unicode version

Theorem funcsetcestrclem5 16799
Description: Lemma 5 for funcsetcestrc 16804. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s  |-  S  =  ( SetCat `  U )
funcsetcestrc.c  |-  C  =  ( Base `  S
)
funcsetcestrc.f  |-  ( ph  ->  F  =  ( x  e.  C  |->  { <. (
Base `  ndx ) ,  x >. } ) )
funcsetcestrc.u  |-  ( ph  ->  U  e. WUni )
funcsetcestrc.o  |-  ( ph  ->  om  e.  U )
funcsetcestrc.g  |-  ( ph  ->  G  =  ( x  e.  C ,  y  e.  C  |->  (  _I  |`  ( y  ^m  x
) ) ) )
Assertion
Ref Expression
funcsetcestrclem5  |-  ( (
ph  /\  ( X  e.  C  /\  Y  e.  C ) )  -> 
( X G Y )  =  (  _I  |`  ( Y  ^m  X
) ) )
Distinct variable groups:    x, C    x, X    ph, x    y, C, x    y, X    x, Y, y    ph, y
Allowed substitution hints:    S( x, y)    U( x, y)    F( x, y)    G( x, y)

Proof of Theorem funcsetcestrclem5
StepHypRef Expression
1 funcsetcestrc.g . . 3  |-  ( ph  ->  G  =  ( x  e.  C ,  y  e.  C  |->  (  _I  |`  ( y  ^m  x
) ) ) )
21adantr 481 . 2  |-  ( (
ph  /\  ( X  e.  C  /\  Y  e.  C ) )  ->  G  =  ( x  e.  C ,  y  e.  C  |->  (  _I  |`  (
y  ^m  x )
) ) )
3 oveq12 6659 . . . . 5  |-  ( ( y  =  Y  /\  x  =  X )  ->  ( y  ^m  x
)  =  ( Y  ^m  X ) )
43ancoms 469 . . . 4  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( y  ^m  x
)  =  ( Y  ^m  X ) )
54reseq2d 5396 . . 3  |-  ( ( x  =  X  /\  y  =  Y )  ->  (  _I  |`  (
y  ^m  x )
)  =  (  _I  |`  ( Y  ^m  X
) ) )
65adantl 482 . 2  |-  ( ( ( ph  /\  ( X  e.  C  /\  Y  e.  C )
)  /\  ( x  =  X  /\  y  =  Y ) )  -> 
(  _I  |`  (
y  ^m  x )
)  =  (  _I  |`  ( Y  ^m  X
) ) )
7 simprl 794 . 2  |-  ( (
ph  /\  ( X  e.  C  /\  Y  e.  C ) )  ->  X  e.  C )
8 simprr 796 . 2  |-  ( (
ph  /\  ( X  e.  C  /\  Y  e.  C ) )  ->  Y  e.  C )
9 ovexd 6680 . . 3  |-  ( (
ph  /\  ( X  e.  C  /\  Y  e.  C ) )  -> 
( Y  ^m  X
)  e.  _V )
109resiexd 6480 . 2  |-  ( (
ph  /\  ( X  e.  C  /\  Y  e.  C ) )  -> 
(  _I  |`  ( Y  ^m  X ) )  e.  _V )
112, 6, 7, 8, 10ovmpt2d 6788 1  |-  ( (
ph  /\  ( X  e.  C  /\  Y  e.  C ) )  -> 
( X G Y )  =  (  _I  |`  ( Y  ^m  X
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   <.cop 4183    |-> cmpt 4729    _I cid 5023    |` cres 5116   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065    ^m cmap 7857  WUnicwun 9522   ndxcnx 15854   Basecbs 15857   SetCatcsetc 16725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  funcsetcestrclem6  16800  funcsetcestrclem7  16801  funcsetcestrclem8  16802  funcsetcestrclem9  16803
  Copyright terms: Public domain W3C validator