MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrhash2wsp Structured version   Visualization version   Unicode version

Theorem frgrhash2wsp 27196
Description: The number of simple paths of length 2 is n*(n-1) in a friendship graph with n vertices. This corresponds to the proof of claim 3 in [Huneke] p. 2: "... the paths of length two in G: by assumption there are ( n 2 ) such paths.". However, Huneke counts undirected paths, so obtains the result ( ( n  _C  2 )  =  ( ( n  x.  (
n  -  1 ) )  /  2 )), whereas we count directed paths, obtaining twice that number. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 10-Jan-2022.)
Hypothesis
Ref Expression
frgrhash2wsp.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
frgrhash2wsp  |-  ( ( G  e. FriendGraph  /\  V  e. 
Fin )  ->  ( # `
 ( 2 WSPathsN  G
) )  =  ( ( # `  V
)  x.  ( (
# `  V )  -  1 ) ) )

Proof of Theorem frgrhash2wsp
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 11185 . . . . 5  |-  2  e.  NN
2 frgrhash2wsp.v . . . . . 6  |-  V  =  (Vtx `  G )
32wspniunwspnon 26819 . . . . 5  |-  ( ( 2  e.  NN  /\  G  e. FriendGraph  )  ->  (
2 WSPathsN  G )  =  U_ a  e.  V  U_ b  e.  ( V  \  {
a } ) ( a ( 2 WSPathsNOn  G
) b ) )
41, 3mpan 706 . . . 4  |-  ( G  e. FriendGraph  ->  ( 2 WSPathsN  G
)  =  U_ a  e.  V  U_ b  e.  ( V  \  {
a } ) ( a ( 2 WSPathsNOn  G
) b ) )
54fveq2d 6195 . . 3  |-  ( G  e. FriendGraph  ->  ( # `  (
2 WSPathsN  G ) )  =  ( # `  U_ a  e.  V  U_ b  e.  ( V  \  {
a } ) ( a ( 2 WSPathsNOn  G
) b ) ) )
65adantr 481 . 2  |-  ( ( G  e. FriendGraph  /\  V  e. 
Fin )  ->  ( # `
 ( 2 WSPathsN  G
) )  =  (
# `  U_ a  e.  V  U_ b  e.  ( V  \  {
a } ) ( a ( 2 WSPathsNOn  G
) b ) ) )
7 simpr 477 . . 3  |-  ( ( G  e. FriendGraph  /\  V  e. 
Fin )  ->  V  e.  Fin )
8 eqid 2622 . . 3  |-  ( V 
\  { a } )  =  ( V 
\  { a } )
92eleq1i 2692 . . . . . 6  |-  ( V  e.  Fin  <->  (Vtx `  G
)  e.  Fin )
10 wspthnonfi 26818 . . . . . 6  |-  ( (Vtx
`  G )  e. 
Fin  ->  ( a ( 2 WSPathsNOn  G ) b )  e.  Fin )
119, 10sylbi 207 . . . . 5  |-  ( V  e.  Fin  ->  (
a ( 2 WSPathsNOn  G
) b )  e. 
Fin )
1211adantl 482 . . . 4  |-  ( ( G  e. FriendGraph  /\  V  e. 
Fin )  ->  (
a ( 2 WSPathsNOn  G
) b )  e. 
Fin )
13123ad2ant1 1082 . . 3  |-  ( ( ( G  e. FriendGraph  /\  V  e.  Fin )  /\  a  e.  V  /\  b  e.  ( V  \  {
a } ) )  ->  ( a ( 2 WSPathsNOn  G ) b )  e.  Fin )
14 2wspiundisj 26856 . . . 4  |- Disj  a  e.  V  U_ b  e.  ( V  \  {
a } ) ( a ( 2 WSPathsNOn  G
) b )
1514a1i 11 . . 3  |-  ( ( G  e. FriendGraph  /\  V  e. 
Fin )  -> Disj  a  e.  V  U_ b  e.  ( V  \  {
a } ) ( a ( 2 WSPathsNOn  G
) b ) )
16 2wspdisj 26855 . . . 4  |- Disj  b  e.  ( V  \  {
a } ) ( a ( 2 WSPathsNOn  G
) b )
1716a1i 11 . . 3  |-  ( ( ( G  e. FriendGraph  /\  V  e.  Fin )  /\  a  e.  V )  -> Disj  b  e.  ( V  \  {
a } ) ( a ( 2 WSPathsNOn  G
) b ) )
18 simplll 798 . . . . 5  |-  ( ( ( ( G  e. FriendGraph  /\  V  e.  Fin )  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  ->  G  e. FriendGraph  )
19 simpr 477 . . . . . 6  |-  ( ( ( G  e. FriendGraph  /\  V  e.  Fin )  /\  a  e.  V )  ->  a  e.  V )
20 eldifi 3732 . . . . . 6  |-  ( b  e.  ( V  \  { a } )  ->  b  e.  V
)
2119, 20anim12i 590 . . . . 5  |-  ( ( ( ( G  e. FriendGraph  /\  V  e.  Fin )  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  -> 
( a  e.  V  /\  b  e.  V
) )
22 eldifsni 4320 . . . . . . 7  |-  ( b  e.  ( V  \  { a } )  ->  b  =/=  a
)
2322necomd 2849 . . . . . 6  |-  ( b  e.  ( V  \  { a } )  ->  a  =/=  b
)
2423adantl 482 . . . . 5  |-  ( ( ( ( G  e. FriendGraph  /\  V  e.  Fin )  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  -> 
a  =/=  b )
252frgr2wsp1 27194 . . . . 5  |-  ( ( G  e. FriendGraph  /\  ( a  e.  V  /\  b  e.  V )  /\  a  =/=  b )  ->  ( # `
 ( a ( 2 WSPathsNOn  G ) b ) )  =  1 )
2618, 21, 24, 25syl3anc 1326 . . . 4  |-  ( ( ( ( G  e. FriendGraph  /\  V  e.  Fin )  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  -> 
( # `  ( a ( 2 WSPathsNOn  G )
b ) )  =  1 )
27263impa 1259 . . 3  |-  ( ( ( G  e. FriendGraph  /\  V  e.  Fin )  /\  a  e.  V  /\  b  e.  ( V  \  {
a } ) )  ->  ( # `  (
a ( 2 WSPathsNOn  G
) b ) )  =  1 )
287, 8, 13, 15, 17, 27hash2iun1dif1 14556 . 2  |-  ( ( G  e. FriendGraph  /\  V  e. 
Fin )  ->  ( # `
 U_ a  e.  V  U_ b  e.  ( V 
\  { a } ) ( a ( 2 WSPathsNOn  G ) b ) )  =  ( (
# `  V )  x.  ( ( # `  V
)  -  1 ) ) )
296, 28eqtrd 2656 1  |-  ( ( G  e. FriendGraph  /\  V  e. 
Fin )  ->  ( # `
 ( 2 WSPathsN  G
) )  =  ( ( # `  V
)  x.  ( (
# `  V )  -  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {csn 4177   U_ciun 4520  Disj wdisj 4620   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937    x. cmul 9941    - cmin 10266   NNcn 11020   2c2 11070   #chash 13117  Vtxcvtx 25874   WSPathsN cwwspthsn 26720   WSPathsNOn cwwspthsnon 26721   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-pthson 26614  df-spthson 26615  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724  df-wspthsn 26725  df-wspthsnon 26726  df-frgr 27121
This theorem is referenced by:  frrusgrord0  27204
  Copyright terms: Public domain W3C validator