Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fv2ndcnv Structured version   Visualization version   Unicode version

Theorem fv2ndcnv 31681
Description: The value of the converse of  2nd restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.)
Assertion
Ref Expression
fv2ndcnv  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( `' ( 2nd  |`  ( { X }  X.  A ) ) `  Y )  =  <. X ,  Y >. )

Proof of Theorem fv2ndcnv
StepHypRef Expression
1 snidg 4206 . . . 4  |-  ( X  e.  V  ->  X  e.  { X } )
21anim1i 592 . . 3  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( X  e.  { X }  /\  Y  e.  A ) )
3 eqid 2622 . . 3  |-  Y  =  Y
42, 3jctil 560 . 2  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( Y  =  Y  /\  ( X  e. 
{ X }  /\  Y  e.  A )
) )
5 2ndconst 7266 . . . . . 6  |-  ( X  e.  V  ->  ( 2nd  |`  ( { X }  X.  A ) ) : ( { X }  X.  A ) -1-1-onto-> A )
65adantr 481 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( 2nd  |`  ( { X }  X.  A
) ) : ( { X }  X.  A ) -1-1-onto-> A )
7 f1ocnv 6149 . . . . 5  |-  ( ( 2nd  |`  ( { X }  X.  A
) ) : ( { X }  X.  A ) -1-1-onto-> A  ->  `' ( 2nd  |`  ( { X }  X.  A ) ) : A -1-1-onto-> ( { X }  X.  A ) )
8 f1ofn 6138 . . . . 5  |-  ( `' ( 2nd  |`  ( { X }  X.  A
) ) : A -1-1-onto-> ( { X }  X.  A
)  ->  `' ( 2nd  |`  ( { X }  X.  A ) )  Fn  A )
96, 7, 83syl 18 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  `' ( 2nd  |`  ( { X }  X.  A
) )  Fn  A
)
10 fnbrfvb 6236 . . . 4  |-  ( ( `' ( 2nd  |`  ( { X }  X.  A
) )  Fn  A  /\  Y  e.  A
)  ->  ( ( `' ( 2nd  |`  ( { X }  X.  A
) ) `  Y
)  =  <. X ,  Y >. 
<->  Y `' ( 2nd  |`  ( { X }  X.  A ) ) <. X ,  Y >. ) )
119, 10sylancom 701 . . 3  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( ( `' ( 2nd  |`  ( { X }  X.  A
) ) `  Y
)  =  <. X ,  Y >. 
<->  Y `' ( 2nd  |`  ( { X }  X.  A ) ) <. X ,  Y >. ) )
12 opex 4932 . . . . . 6  |-  <. X ,  Y >.  e.  _V
13 brcnvg 5303 . . . . . 6  |-  ( ( Y  e.  A  /\  <. X ,  Y >.  e. 
_V )  ->  ( Y `' ( 2nd  |`  ( { X }  X.  A
) ) <. X ,  Y >. 
<-> 
<. X ,  Y >. ( 2nd  |`  ( { X }  X.  A
) ) Y ) )
1412, 13mpan2 707 . . . . 5  |-  ( Y  e.  A  ->  ( Y `' ( 2nd  |`  ( { X }  X.  A
) ) <. X ,  Y >. 
<-> 
<. X ,  Y >. ( 2nd  |`  ( { X }  X.  A
) ) Y ) )
1514adantl 482 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( Y `' ( 2nd  |`  ( { X }  X.  A
) ) <. X ,  Y >. 
<-> 
<. X ,  Y >. ( 2nd  |`  ( { X }  X.  A
) ) Y ) )
16 brresg 5405 . . . . . 6  |-  ( Y  e.  A  ->  ( <. X ,  Y >. ( 2nd  |`  ( { X }  X.  A
) ) Y  <->  ( <. X ,  Y >. 2nd Y  /\  <. X ,  Y >.  e.  ( { X }  X.  A ) ) ) )
1716adantl 482 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( <. X ,  Y >. ( 2nd  |`  ( { X }  X.  A
) ) Y  <->  ( <. X ,  Y >. 2nd Y  /\  <. X ,  Y >.  e.  ( { X }  X.  A ) ) ) )
18 opelxp 5146 . . . . . . 7  |-  ( <. X ,  Y >.  e.  ( { X }  X.  A )  <->  ( X  e.  { X }  /\  Y  e.  A )
)
1918anbi2i 730 . . . . . 6  |-  ( (
<. X ,  Y >. 2nd Y  /\  <. X ,  Y >.  e.  ( { X }  X.  A
) )  <->  ( <. X ,  Y >. 2nd Y  /\  ( X  e.  { X }  /\  Y  e.  A ) ) )
20 br2ndeqg 31673 . . . . . . 7  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( <. X ,  Y >. 2nd Y  <->  Y  =  Y ) )
2120anbi1d 741 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( ( <. X ,  Y >. 2nd Y  /\  ( X  e.  { X }  /\  Y  e.  A
) )  <->  ( Y  =  Y  /\  ( X  e.  { X }  /\  Y  e.  A
) ) ) )
2219, 21syl5bb 272 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( ( <. X ,  Y >. 2nd Y  /\  <. X ,  Y >.  e.  ( { X }  X.  A ) )  <->  ( Y  =  Y  /\  ( X  e.  { X }  /\  Y  e.  A
) ) ) )
2317, 22bitrd 268 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( <. X ,  Y >. ( 2nd  |`  ( { X }  X.  A
) ) Y  <->  ( Y  =  Y  /\  ( X  e.  { X }  /\  Y  e.  A
) ) ) )
2415, 23bitrd 268 . . 3  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( Y `' ( 2nd  |`  ( { X }  X.  A
) ) <. X ,  Y >. 
<->  ( Y  =  Y  /\  ( X  e. 
{ X }  /\  Y  e.  A )
) ) )
2511, 24bitrd 268 . 2  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( ( `' ( 2nd  |`  ( { X }  X.  A
) ) `  Y
)  =  <. X ,  Y >. 
<->  ( Y  =  Y  /\  ( X  e. 
{ X }  /\  Y  e.  A )
) ) )
264, 25mpbird 247 1  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( `' ( 2nd  |`  ( { X }  X.  A ) ) `  Y )  =  <. X ,  Y >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   `'ccnv 5113    |` cres 5116    Fn wfn 5883   -1-1-onto->wf1o 5887   ` cfv 5888   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator