![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcnvg | Structured version Visualization version Unicode version |
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
Ref | Expression |
---|---|
brcnvg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnvg 5302 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-br 4654 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-br 4654 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3bitr4g 303 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-cnv 5122 |
This theorem is referenced by: brcnv 5305 brelrng 5355 eliniseg 5494 relbrcnvg 5504 brcodir 5515 elpredg 5694 predep 5706 dffv2 6271 ersym 7754 brdifun 7771 eqinf 8390 inflb 8395 infglb 8396 infglbb 8397 infltoreq 8408 infempty 8412 brcnvtrclfv 13744 oduleg 17132 posglbd 17150 znleval 19903 brbtwn 25779 fcoinvbr 29419 cnvordtrestixx 29959 xrge0iifiso 29981 orvcgteel 30529 inffzOLD 31615 fv1stcnv 31680 fv2ndcnv 31681 wsuclem 31773 wsuclemOLD 31774 wsuclb 31777 slenlt 31877 colineardim1 32168 gtinfOLD 32314 eldmcnv 34113 ineccnvmo 34122 alrmomo 34123 brnonrel 37895 ntrneifv2 38378 gte-lte 42465 gt-lt 42466 |
Copyright terms: Public domain | W3C validator |