MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvcosymgeq Structured version   Visualization version   Unicode version

Theorem fvcosymgeq 17849
Description: The values of two compositions of permutations are equal if the values of the composed permutations are pairwise equal. (Contributed by AV, 26-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s  |-  S  =  ( SymGrp `  N )
gsmsymgrfix.b  |-  B  =  ( Base `  S
)
gsmsymgreq.z  |-  Z  =  ( SymGrp `  M )
gsmsymgreq.p  |-  P  =  ( Base `  Z
)
gsmsymgreq.i  |-  I  =  ( N  i^i  M
)
Assertion
Ref Expression
fvcosymgeq  |-  ( ( G  e.  B  /\  K  e.  P )  ->  ( ( X  e.  I  /\  ( G `
 X )  =  ( K `  X
)  /\  A. n  e.  I  ( F `  n )  =  ( H `  n ) )  ->  ( ( F  o.  G ) `  X )  =  ( ( H  o.  K
) `  X )
) )
Distinct variable groups:    n, F    n, G    n, H    n, I    n, K    n, X
Allowed substitution hints:    B( n)    P( n)    S( n)    M( n)    N( n)    Z( n)

Proof of Theorem fvcosymgeq
StepHypRef Expression
1 gsmsymgrfix.s . . . . . . 7  |-  S  =  ( SymGrp `  N )
2 gsmsymgrfix.b . . . . . . 7  |-  B  =  ( Base `  S
)
31, 2symgbasf 17804 . . . . . 6  |-  ( G  e.  B  ->  G : N --> N )
4 ffn 6045 . . . . . 6  |-  ( G : N --> N  ->  G  Fn  N )
53, 4syl 17 . . . . 5  |-  ( G  e.  B  ->  G  Fn  N )
6 gsmsymgreq.z . . . . . . 7  |-  Z  =  ( SymGrp `  M )
7 gsmsymgreq.p . . . . . . 7  |-  P  =  ( Base `  Z
)
86, 7symgbasf 17804 . . . . . 6  |-  ( K  e.  P  ->  K : M --> M )
9 ffn 6045 . . . . . 6  |-  ( K : M --> M  ->  K  Fn  M )
108, 9syl 17 . . . . 5  |-  ( K  e.  P  ->  K  Fn  M )
115, 10anim12i 590 . . . 4  |-  ( ( G  e.  B  /\  K  e.  P )  ->  ( G  Fn  N  /\  K  Fn  M
) )
1211adantr 481 . . 3  |-  ( ( ( G  e.  B  /\  K  e.  P
)  /\  ( X  e.  I  /\  ( G `  X )  =  ( K `  X )  /\  A. n  e.  I  ( F `  n )  =  ( H `  n ) ) )  ->  ( G  Fn  N  /\  K  Fn  M
) )
13 gsmsymgreq.i . . . . . . . 8  |-  I  =  ( N  i^i  M
)
1413eleq2i 2693 . . . . . . 7  |-  ( X  e.  I  <->  X  e.  ( N  i^i  M ) )
1514biimpi 206 . . . . . 6  |-  ( X  e.  I  ->  X  e.  ( N  i^i  M
) )
16153ad2ant1 1082 . . . . 5  |-  ( ( X  e.  I  /\  ( G `  X )  =  ( K `  X )  /\  A. n  e.  I  ( F `  n )  =  ( H `  n ) )  ->  X  e.  ( N  i^i  M ) )
1716adantl 482 . . . 4  |-  ( ( ( G  e.  B  /\  K  e.  P
)  /\  ( X  e.  I  /\  ( G `  X )  =  ( K `  X )  /\  A. n  e.  I  ( F `  n )  =  ( H `  n ) ) )  ->  X  e.  ( N  i^i  M ) )
18 simpr2 1068 . . . 4  |-  ( ( ( G  e.  B  /\  K  e.  P
)  /\  ( X  e.  I  /\  ( G `  X )  =  ( K `  X )  /\  A. n  e.  I  ( F `  n )  =  ( H `  n ) ) )  ->  ( G `  X )  =  ( K `  X ) )
191, 2symgbasf1o 17803 . . . . . . . . . . 11  |-  ( G  e.  B  ->  G : N -1-1-onto-> N )
20 dff1o5 6146 . . . . . . . . . . . 12  |-  ( G : N -1-1-onto-> N  <->  ( G : N -1-1-> N  /\  ran  G  =  N ) )
21 eqcom 2629 . . . . . . . . . . . . . 14  |-  ( ran 
G  =  N  <->  N  =  ran  G )
2221biimpi 206 . . . . . . . . . . . . 13  |-  ( ran 
G  =  N  ->  N  =  ran  G )
2322adantl 482 . . . . . . . . . . . 12  |-  ( ( G : N -1-1-> N  /\  ran  G  =  N )  ->  N  =  ran  G )
2420, 23sylbi 207 . . . . . . . . . . 11  |-  ( G : N -1-1-onto-> N  ->  N  =  ran  G )
2519, 24syl 17 . . . . . . . . . 10  |-  ( G  e.  B  ->  N  =  ran  G )
266, 7symgbasf1o 17803 . . . . . . . . . . 11  |-  ( K  e.  P  ->  K : M -1-1-onto-> M )
27 dff1o5 6146 . . . . . . . . . . . 12  |-  ( K : M -1-1-onto-> M  <->  ( K : M -1-1-> M  /\  ran  K  =  M ) )
28 eqcom 2629 . . . . . . . . . . . . . 14  |-  ( ran 
K  =  M  <->  M  =  ran  K )
2928biimpi 206 . . . . . . . . . . . . 13  |-  ( ran 
K  =  M  ->  M  =  ran  K )
3029adantl 482 . . . . . . . . . . . 12  |-  ( ( K : M -1-1-> M  /\  ran  K  =  M )  ->  M  =  ran  K )
3127, 30sylbi 207 . . . . . . . . . . 11  |-  ( K : M -1-1-onto-> M  ->  M  =  ran  K )
3226, 31syl 17 . . . . . . . . . 10  |-  ( K  e.  P  ->  M  =  ran  K )
3325, 32ineqan12d 3816 . . . . . . . . 9  |-  ( ( G  e.  B  /\  K  e.  P )  ->  ( N  i^i  M
)  =  ( ran 
G  i^i  ran  K ) )
3413, 33syl5eq 2668 . . . . . . . 8  |-  ( ( G  e.  B  /\  K  e.  P )  ->  I  =  ( ran 
G  i^i  ran  K ) )
3534raleqdv 3144 . . . . . . 7  |-  ( ( G  e.  B  /\  K  e.  P )  ->  ( A. n  e.  I  ( F `  n )  =  ( H `  n )  <->  A. n  e.  ( ran  G  i^i  ran  K
) ( F `  n )  =  ( H `  n ) ) )
3635biimpcd 239 . . . . . 6  |-  ( A. n  e.  I  ( F `  n )  =  ( H `  n )  ->  (
( G  e.  B  /\  K  e.  P
)  ->  A. n  e.  ( ran  G  i^i  ran 
K ) ( F `
 n )  =  ( H `  n
) ) )
37363ad2ant3 1084 . . . . 5  |-  ( ( X  e.  I  /\  ( G `  X )  =  ( K `  X )  /\  A. n  e.  I  ( F `  n )  =  ( H `  n ) )  -> 
( ( G  e.  B  /\  K  e.  P )  ->  A. n  e.  ( ran  G  i^i  ran 
K ) ( F `
 n )  =  ( H `  n
) ) )
3837impcom 446 . . . 4  |-  ( ( ( G  e.  B  /\  K  e.  P
)  /\  ( X  e.  I  /\  ( G `  X )  =  ( K `  X )  /\  A. n  e.  I  ( F `  n )  =  ( H `  n ) ) )  ->  A. n  e.  ( ran  G  i^i  ran  K ) ( F `  n )  =  ( H `  n ) )
3917, 18, 383jca 1242 . . 3  |-  ( ( ( G  e.  B  /\  K  e.  P
)  /\  ( X  e.  I  /\  ( G `  X )  =  ( K `  X )  /\  A. n  e.  I  ( F `  n )  =  ( H `  n ) ) )  ->  ( X  e.  ( N  i^i  M
)  /\  ( G `  X )  =  ( K `  X )  /\  A. n  e.  ( ran  G  i^i  ran 
K ) ( F `
 n )  =  ( H `  n
) ) )
40 fvcofneq 6367 . . 3  |-  ( ( G  Fn  N  /\  K  Fn  M )  ->  ( ( X  e.  ( N  i^i  M
)  /\  ( G `  X )  =  ( K `  X )  /\  A. n  e.  ( ran  G  i^i  ran 
K ) ( F `
 n )  =  ( H `  n
) )  ->  (
( F  o.  G
) `  X )  =  ( ( H  o.  K ) `  X ) ) )
4112, 39, 40sylc 65 . 2  |-  ( ( ( G  e.  B  /\  K  e.  P
)  /\  ( X  e.  I  /\  ( G `  X )  =  ( K `  X )  /\  A. n  e.  I  ( F `  n )  =  ( H `  n ) ) )  ->  ( ( F  o.  G ) `  X )  =  ( ( H  o.  K
) `  X )
)
4241ex 450 1  |-  ( ( G  e.  B  /\  K  e.  P )  ->  ( ( X  e.  I  /\  ( G `
 X )  =  ( K `  X
)  /\  A. n  e.  I  ( F `  n )  =  ( H `  n ) )  ->  ( ( F  o.  G ) `  X )  =  ( ( H  o.  K
) `  X )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573   ran crn 5115    o. ccom 5118    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888   Basecbs 15857   SymGrpcsymg 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-tset 15960  df-symg 17798
This theorem is referenced by:  gsmsymgreqlem1  17850
  Copyright terms: Public domain W3C validator