MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvn0elsuppb Structured version   Visualization version   Unicode version

Theorem fvn0elsuppb 7312
Description: The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
fvn0elsuppb  |-  ( ( B  e.  V  /\  X  e.  B  /\  G  Fn  B )  ->  ( ( G `  X )  =/=  (/)  <->  X  e.  ( G supp  (/) ) ) )

Proof of Theorem fvn0elsuppb
StepHypRef Expression
1 fvn0elsupp 7311 . . . 4  |-  ( ( ( B  e.  V  /\  X  e.  B
)  /\  ( G  Fn  B  /\  ( G `  X )  =/=  (/) ) )  ->  X  e.  ( G supp  (/) ) )
21exp43 640 . . 3  |-  ( B  e.  V  ->  ( X  e.  B  ->  ( G  Fn  B  -> 
( ( G `  X )  =/=  (/)  ->  X  e.  ( G supp  (/) ) ) ) ) )
323imp 1256 . 2  |-  ( ( B  e.  V  /\  X  e.  B  /\  G  Fn  B )  ->  ( ( G `  X )  =/=  (/)  ->  X  e.  ( G supp  (/) ) ) )
4 simp3 1063 . . . 4  |-  ( ( B  e.  V  /\  X  e.  B  /\  G  Fn  B )  ->  G  Fn  B )
5 simp1 1061 . . . 4  |-  ( ( B  e.  V  /\  X  e.  B  /\  G  Fn  B )  ->  B  e.  V )
6 0ex 4790 . . . . 5  |-  (/)  e.  _V
76a1i 11 . . . 4  |-  ( ( B  e.  V  /\  X  e.  B  /\  G  Fn  B )  -> 
(/)  e.  _V )
8 elsuppfn 7303 . . . 4  |-  ( ( G  Fn  B  /\  B  e.  V  /\  (/) 
e.  _V )  ->  ( X  e.  ( G supp  (/) )  <->  ( X  e.  B  /\  ( G `
 X )  =/=  (/) ) ) )
94, 5, 7, 8syl3anc 1326 . . 3  |-  ( ( B  e.  V  /\  X  e.  B  /\  G  Fn  B )  ->  ( X  e.  ( G supp  (/) )  <->  ( X  e.  B  /\  ( G `  X )  =/=  (/) ) ) )
10 simpr 477 . . 3  |-  ( ( X  e.  B  /\  ( G `  X )  =/=  (/) )  ->  ( G `  X )  =/=  (/) )
119, 10syl6bi 243 . 2  |-  ( ( B  e.  V  /\  X  e.  B  /\  G  Fn  B )  ->  ( X  e.  ( G supp  (/) )  ->  ( G `  X )  =/=  (/) ) )
123, 11impbid 202 1  |-  ( ( B  e.  V  /\  X  e.  B  /\  G  Fn  B )  ->  ( ( G `  X )  =/=  (/)  <->  X  e.  ( G supp  (/) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  brcic  16458
  Copyright terms: Public domain W3C validator