MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcic Structured version   Visualization version   Unicode version

Theorem brcic 16458
Description: The relation "is isomorphic to" for categories. (Contributed by AV, 5-Apr-2020.)
Hypotheses
Ref Expression
cic.i  |-  I  =  (  Iso  `  C
)
cic.b  |-  B  =  ( Base `  C
)
cic.c  |-  ( ph  ->  C  e.  Cat )
cic.x  |-  ( ph  ->  X  e.  B )
cic.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
brcic  |-  ( ph  ->  ( X (  ~=c𝑐  `  C
) Y  <->  ( X I Y )  =/=  (/) ) )

Proof of Theorem brcic
StepHypRef Expression
1 cic.c . . . 4  |-  ( ph  ->  C  e.  Cat )
2 cicfval 16457 . . . 4  |-  ( C  e.  Cat  ->  (  ~=c𝑐  `  C )  =  ( (  Iso  `  C
) supp  (/) ) )
31, 2syl 17 . . 3  |-  ( ph  ->  (  ~=c𝑐  `  C )  =  ( (  Iso  `  C
) supp  (/) ) )
43breqd 4664 . 2  |-  ( ph  ->  ( X (  ~=c𝑐  `  C
) Y  <->  X (
(  Iso  `  C ) supp  (/) ) Y ) )
5 df-br 4654 . . 3  |-  ( X ( (  Iso  `  C
) supp  (/) ) Y  <->  <. X ,  Y >.  e.  ( (  Iso  `  C ) supp  (/) ) )
65a1i 11 . 2  |-  ( ph  ->  ( X ( (  Iso  `  C ) supp  (/) ) Y  <->  <. X ,  Y >.  e.  ( (  Iso  `  C ) supp  (/) ) ) )
7 cic.i . . . . . 6  |-  I  =  (  Iso  `  C
)
87a1i 11 . . . . 5  |-  ( ph  ->  I  =  (  Iso  `  C ) )
98fveq1d 6193 . . . 4  |-  ( ph  ->  ( I `  <. X ,  Y >. )  =  ( (  Iso  `  C ) `  <. X ,  Y >. )
)
109neeq1d 2853 . . 3  |-  ( ph  ->  ( ( I `  <. X ,  Y >. )  =/=  (/)  <->  ( (  Iso  `  C ) `  <. X ,  Y >. )  =/=  (/) ) )
11 df-ov 6653 . . . . . 6  |-  ( X I Y )  =  ( I `  <. X ,  Y >. )
1211eqcomi 2631 . . . . 5  |-  ( I `
 <. X ,  Y >. )  =  ( X I Y )
1312a1i 11 . . . 4  |-  ( ph  ->  ( I `  <. X ,  Y >. )  =  ( X I Y ) )
1413neeq1d 2853 . . 3  |-  ( ph  ->  ( ( I `  <. X ,  Y >. )  =/=  (/)  <->  ( X I Y )  =/=  (/) ) )
15 fvexd 6203 . . . . 5  |-  ( ph  ->  ( Base `  C
)  e.  _V )
16 sqxpexg 6963 . . . . 5  |-  ( (
Base `  C )  e.  _V  ->  ( ( Base `  C )  X.  ( Base `  C
) )  e.  _V )
1715, 16syl 17 . . . 4  |-  ( ph  ->  ( ( Base `  C
)  X.  ( Base `  C ) )  e. 
_V )
18 cic.x . . . . . 6  |-  ( ph  ->  X  e.  B )
19 cic.b . . . . . 6  |-  B  =  ( Base `  C
)
2018, 19syl6eleq 2711 . . . . 5  |-  ( ph  ->  X  e.  ( Base `  C ) )
21 cic.y . . . . . 6  |-  ( ph  ->  Y  e.  B )
2221, 19syl6eleq 2711 . . . . 5  |-  ( ph  ->  Y  e.  ( Base `  C ) )
23 opelxp 5146 . . . . 5  |-  ( <. X ,  Y >.  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  <->  ( X  e.  ( Base `  C
)  /\  Y  e.  ( Base `  C )
) )
2420, 22, 23sylanbrc 698 . . . 4  |-  ( ph  -> 
<. X ,  Y >.  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )
25 isofn 16435 . . . . 5  |-  ( C  e.  Cat  ->  (  Iso  `  C )  Fn  ( ( Base `  C
)  X.  ( Base `  C ) ) )
261, 25syl 17 . . . 4  |-  ( ph  ->  (  Iso  `  C
)  Fn  ( (
Base `  C )  X.  ( Base `  C
) ) )
27 fvn0elsuppb 7312 . . . 4  |-  ( ( ( ( Base `  C
)  X.  ( Base `  C ) )  e. 
_V  /\  <. X ,  Y >.  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  (  Iso  `  C )  Fn  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( (  Iso  `  C ) `  <. X ,  Y >. )  =/=  (/)  <->  <. X ,  Y >.  e.  ( (  Iso  `  C ) supp  (/) ) ) )
2817, 24, 26, 27syl3anc 1326 . . 3  |-  ( ph  ->  ( ( (  Iso  `  C ) `  <. X ,  Y >. )  =/=  (/)  <->  <. X ,  Y >.  e.  ( (  Iso  `  C ) supp  (/) ) ) )
2910, 14, 283bitr3rd 299 . 2  |-  ( ph  ->  ( <. X ,  Y >.  e.  ( (  Iso  `  C ) supp  (/) )  <->  ( X I Y )  =/=  (/) ) )
304, 6, 293bitrd 294 1  |-  ( ph  ->  ( X (  ~=c𝑐  `  C
) Y  <->  ( X I Y )  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   <.cop 4183   class class class wbr 4653    X. cxp 5112    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   supp csupp 7295   Basecbs 15857   Catccat 16325    Iso ciso 16406    ~=c𝑐 ccic 16455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-supp 7296  df-inv 16408  df-iso 16409  df-cic 16456
This theorem is referenced by:  cic  16459
  Copyright terms: Public domain W3C validator