| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvvolicof | Structured version Visualization version Unicode version | ||
| Description: The function value of the Lebesgue measure of a left-closed right-open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| fvvolicof.f |
|
| fvvolicof.x |
|
| Ref | Expression |
|---|---|
| fvvolicof |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvvolicof.f |
. . . 4
| |
| 2 | ffun 6048 |
. . . 4
| |
| 3 | 1, 2 | syl 17 |
. . 3
|
| 4 | fvvolicof.x |
. . . 4
| |
| 5 | fdm 6051 |
. . . . . 6
| |
| 6 | 1, 5 | syl 17 |
. . . . 5
|
| 7 | 6 | eqcomd 2628 |
. . . 4
|
| 8 | 4, 7 | eleqtrd 2703 |
. . 3
|
| 9 | fvco 6274 |
. . 3
| |
| 10 | 3, 8, 9 | syl2anc 693 |
. 2
|
| 11 | icof 39411 |
. . . . 5
| |
| 12 | ffun 6048 |
. . . . 5
| |
| 13 | 11, 12 | ax-mp 5 |
. . . 4
|
| 14 | 13 | a1i 11 |
. . 3
|
| 15 | 1, 4 | ffvelrnd 6360 |
. . . 4
|
| 16 | 11 | fdmi 6052 |
. . . 4
|
| 17 | 15, 16 | syl6eleqr 2712 |
. . 3
|
| 18 | fvco 6274 |
. . 3
| |
| 19 | 14, 17, 18 | syl2anc 693 |
. 2
|
| 20 | df-ov 6653 |
. . . . 5
| |
| 21 | 20 | a1i 11 |
. . . 4
|
| 22 | 1st2nd2 7205 |
. . . . . . 7
| |
| 23 | 15, 22 | syl 17 |
. . . . . 6
|
| 24 | 23 | eqcomd 2628 |
. . . . 5
|
| 25 | 24 | fveq2d 6195 |
. . . 4
|
| 26 | 21, 25 | eqtr2d 2657 |
. . 3
|
| 27 | 26 | fveq2d 6195 |
. 2
|
| 28 | 10, 19, 27 | 3eqtrd 2660 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-xr 10078 df-ico 12181 |
| This theorem is referenced by: voliooicof 40213 volicofmpt 40214 |
| Copyright terms: Public domain | W3C validator |